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Preface

Spin glasses have become a paradigm for highly complex disordered systems.
In the 1960ies, certain magnetic alloys were found to have rather anomalous
magnetic and thermal properties that seemed to indicate the existence of a
new kind of phase transition, clearly distinct from conventional ferromag-
netic materials. The origin of these anomalies was soon deemed to lie in two
features: the presence of competing signs in the two-body interactions, and
the disorder in the positions of the magnetic atoms in the alloy. This has
led to the modelling of such materials in the form of spin-systems with ran-
dom interactions. In the 1970ies, two principle models were proposed: the
Edwards-Anderson model, which is a lattice spin system with random nearest
neighbor interactions and as such is the randomized version of the classical
Ising model; and the Sherrington-Kirkpatrick model, proposed as a mean field
model, where all spins interact with each other on equal footing, which is a ran-
domized version of the Curie-Weiss model. The SK-model was clearly intended
to provide a simple, solvable caricature of the Edwards-Anderson model, that
should give some insights into the nature of the spin glass transitions, just as
the Curie-Weiss model allows a partial understanding of ferromagnetic phase
transitions. The remarkable interest that the spin glass problem has received
is largely due to the fact that neither of the two models turned out to be easily
tractable. The Sherrington-Kirkpatrick model was solved on a heuristic level
through the remarkable “replica symmetry breaking”™ ansatz of Parisi, which
not only involved rather unconventional mathematical concepts, but also ex-
hibited that the thermodynamic limit of this model should be described by an
extraordinarily complex structure. The short-range Edwards Anderson model
has been even more elusive, and beyond some rather rudimentary rigorous
results, most of our insight into the model is based on numerical simulations.
which in themselves prove to be a highly challenging task.

Mathematicians became interested in this problem in the late 1980ies, but
on a larger scale in the 1990ies, starting with work of Pastur and Shcherbina,
and the systematic programmes initiated by Guerra on the one hand and
Talagrand on the other. In 1996 a workshop in Berlin brought together the
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leading experts in the field. The state of the art at that time is to a large
extend documented in the volume “Nathematical Aspects of Spin Glasses and
Neural Networks™, edited by A. Bovier and P. Picco (Birkhiduser, 1997). Since
then, the progress made in the field has exceeded all expectations. Even as we
began planning for a new workshop on the mathematics of spin glasses that
was finally held at the Centro Stefano Franscini on the Monte Verita., we did
not anticipate that he timing of the event would allow to present for the first
time some ground breaking progress. In 2002, Francesco Guerra published an
upper bound on the free energy of the SK model that coincided with the Parisi
solution. This was the first time that this remarkable construction was to be
related to a mathematically rigorous result. Less than a year later, Michel
Talagrand announced that he could prove the corresponding lower bound,
thus establishing the Parisi solution in a fully rigorous manner.

The Monte Verita meeting thus fell into a most exciting period. It was
attended by most of the leading experts on spin glasses, including David Sher-
rington, Giorgio Parisi, Francesco Guerra, Michel Talagrand. Michael Aizen-
man, Chuck Newman, and Daniel Stein, to name a few. Besides the reports on
the progress mentioned above, the participants and invited speakers reported
on a wealth of interesting new results around spin glasses, both on the static
and dynamic aspect. As a result we decided to collect a number of invited
review papers to document the state of the art in spin glass theory today. The
result of this is the present book. It contains a general introduction to the
spin glass problem. written by E. Bolthausen. that will serve in particular as
a pedagogical guide to the description of the nature of the Parisi solution and
the derivation of Guerra’s bound in the formulation of Aizenman, Sims, and
Star. A. Bovier and I. Kurkova shed light on the Parisi solution from another
angle by deriving and describing the asymptotics of the Gibbs measure in
another class of spin glass models, the Generalized Random Energy models,
in full detail. D. Sherrington gives an account of the history of the spin glass
problem from a more physical perspective. M. Talagrand’s contribution is a
pedagogical presentation of his celebrated proof of the validity of the Parisi
solution. Two articles by Ch. Newman and D. Stein discuss the latest devel-
opments in the ongoing dispute on the question, whether the predictions of
the mean field Sherrington-Kirkpatrick model have any implications for the
behavior of short range spin glasses. Finally, A. Guionnet gives an account
of what has been achieved in the understanding of another outstanding issue
about spin glasses, namely their non-equilibrium properties.

We hope that this volume will serve as a reference handbook for anyone
wanting to get an idea of where we are in the theory of spin glasses, and what
this subject is all about.

Eruin Bolthausen
Anton Bouvier
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Random Media and Spin Glasses:
An Introduction into Some Mathematical
Results and Problems

Erwin Bolthausen

Mathematics Institute, University of Ziirich
Winterthurerstraffe 190, 8057 Zurich, Switzerland
e-mail: eb@math.unnizh.ch

1 Introduction

No materials in the history of solid state physics have been as intriguing and
perplexing than certain alloys of ferromagnets and conductors, such as Aulke
or CuMg, known as spin glasses. The attempts to model these systems have led
to a class of disordered spin systems whose mathematical analysis has proven
to be among the most fascinating fields of statistical mechanics over the last
25 years. Even the seemingly most simple model class, the mean-field models
introduced by Sherrington and Kirkpatrick [1] now known as SK-models
have proven to represent an amazingly rich structure that is mathematically
extraordinarily hard to grasp. Theoretical physics has produced an astound-
ing solution describing the thermodynamics properties of these models that
is based on ad hoc constructions (so-called “replica symmetry breaking™ [2])
that so far have largely resisted attempts to be given a concrete mathemati-
cal sense. From a purely mathematical point of view. the problem posed here
represents a canonical problem in the theory of stochastic processes in high
dimensions and as such the interest in it transcends largely the original phys-
ical question. The fact that the heuristic approach of theoretical physics, if
given a clear mathematical meaning, would give a totally new and powerful
tool for the analysis of such questions is the reason why there has been a
strong upsurge in interest from within the mathematical, and in particular
probabilistic community in this and related problems. NMoreover, the same
types of mathematical problems arise in many areas of applications that are
of great current interest. For example, heuristic methods of statistical mechan-
ics make powerful prediction concerning numerous problems of combinatorial
optimization, computer science, and information technology.

For a long time progress on mathematically rigorous results in this
field have been extremely limited, but over the last vears the situation has
changed considerably due to the results of Bovier, Comets, Derrida, Gayrard,
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Newman, Pastur, Picco, Shcherbina, Stein, Talagrand, and Toninelli, for
instance. Michel Talagrand has developed in a systematic way an induc-
tion technique known as the “cavity method” as a tool to analyze in a
rigorous way random Gibbs measures. This has allowed him to confirm pre-
dictions made by the heuristic “replica method” mostly in domains where the
so-called replica-symmetric solution is predicted to hold; in mathematical
terms, this corresponds to situations where the Gibbs measure is asymp-
totically a (random) product measure. The cavity method then allows to pre-
cisely compute the corresponding parameters. Interestingly, the method can
also be applied in some situations where the Gibbs measure is a nontrivial
mixture of product measures (“one-step replica symmetry breaking”), such
as the p-spin Sherrington Kirkpatrick model. Much of this can be found in
“alagrand’s book [3].

Another discovery was made by Guerra and Ghirlanda. This concerns a set.
of recursive relations between so-called multioverlap distributions. In certain
cases it could be shown that they determine a universal structure in the Gibbs
measures of these systems. In particular, these identities proved crucial in the
work of Talagrand on the p-spin models, and in recent work of Bovier and
Kurkova who used them to prove convergence and describe the limit of the
Gibbs measures in a class of models introduced by Derrida, the so-called
generalized random energy models.

The most spectacular successes recently, initiated by Francesco Guerra,
are coming from interpolation techniques between different processes. Such
methods are in principle well established in the analysis of Gaussian processes.
Nonetheless, their judicious use has led to very remarkable results: Guerra and
Toninelli [4] used them to prove the existence of the limit of the free energy
in the SK (and many similar) models. A bit later, Guerra [5] has been able
to prove that the predicted expression for the free energy of the SK-model
from replica theory is at least a lower bound, and finally, Talagrand [6] has
been able to refine the technique and combine it with his cavity method to
control the error in Guerra’s bound, and in this way he proved the Parisi
formula [7] in the full temperature regime of the SK-model. Despite of these
successes, there still remain many open problems, and it is perhaps fair to say
that even the SK-model, where the Parisi formula has now been proved, is
still very poorly understood. For instance, an understanding of the so-called
ultrametricity is completely lacking, although it is at the very heart of the
physics theory of the model. Even more importantly, there are many models
where interpolation techniques had been far less successful, and where our
understanding is till restricted to the part of the parameter space outside the
spin glass phase.

In a second development, the analysis of the stochastic dynamics of highly
disordered model is starting to make progress. Important contributions are due
to Ben Arous and Guionnet and Grunwald, who derived asymptotic dynamics
in Langevin and Glauber dynamics of the SK-model. Spin glass dynamics
is supposed to have so-called “aging” which means that the systems react
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slower the older it gets. There are mathematically precise descriptions of this
behavior which, however, have not yet been proved for the SK-model, but for
simpler models there has been a lot of progress, recently (see the paper of
Alice Guionnet in this volume).

In this introductory notes, I will give an overview for some of the develop-
ments, but I will mainly focus on mathematical results, and on results which
are developed later in other contributions in this volume in more details.

For an overview over recent developments and perspectives in physics, see
the article of Sherrington [8] in this volume. A topic which I leave out in this
introduction is short-range spin glass models. This is presently still quite a
controversial subject, even in the physics literature. In recent years, Newman
and Stein [9,10] have obtained results.

The focus given here in my introductory notes is on the mean-field model,
and in particular on the recent mathematical developments around Guerra’s
interpolation technique (Sects. 4.1 and 5.3), the Talagrand’s version of the
cavity method in Sect. 4.2, and the random energy models in Sect. 5. For more
on this subject, see the article by Bovier and Kurkova [11]. For a more in depth
overview of Talagrand’s application of the Guerra interpolation to SK, and
its combination with the cavity method, see his article in this volume [12].
A topic I only shortly mention here is the dynamical behavior of spin glasses
which is presented in much more depth by Guionnet [13].

2 The Basic Mathematical Models

The usual lattice spin- models of (nonrandom) Ising type are defined as follows.
. oy lef A .

Consider a finite set A, and let ¥4 = {—1,1}" . Let further A = (aij), p_— be

a real symmetric matrix, and h = (h;),., be a real vector. The Hamiltonian

with these parameters is the mapping H 4 : ¥4 — R defined by

def 1
—Han (o) = 5 Z a,;0,0; + Zhlﬂu

i,JEA €A
and the Gibbs measure G4 on ¥, is defined by

def 1 .
Gaan (o) X 7o oxp[=Han ()], (2.1)

where of course

Zyan® Zn exp [~ Han ()] (2.2)

is the so-called partition function, the normalizing factor in order that the
Gibbs distribution is a probability distribution. (In the physics literature.
one takes the Hamiltonian with a minus sign, so I keep with this tradition,
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although it is mathematically a bit annoying.) Of great importance is the
(finite volume) free energy, defined by

A h o Z 2.3
A ( ) = ]A| A.Ah- (2.3)

The importance of this quantity is coming from the fact that most of the
physical interesting quantities can be expressed through it. like mean magne-
tization, entropy, etc. For instance

9 o 1
‘l l = — (’ .
()h, Fy (4.h) IA] E :n g;Ga.an(0)

and summing over j € A gives the mean magnetization under the Gibbs
measure.

As for a finite set A, detailed properties of such models are usually impos-
sible to describe, one usually tries to perform the “thermodynamic limit.” For
instance, if A C Z%. one can usually prove that the limiting free energy

(A h) Y Jim Fy (A, h)

A Z4

exists, provided the A approach Z? in a not too nasty way. and A and h are
defined on the whole of Z.
The best known example is the Ising model where A is a finite (large) box
in Z4, and
def | Bli—jl=1

A5 = n
: () otherwise

3 the so-called inverse temperature.

Short-range models are usually rather difficult to analyze. and often a
qualitatively good approximation is obtained from mean-field models where
every spin interacts with any other one on equal footing. The simplest mean-
field model is the Curie- Weiss model. Here

a; € B/|A]L Vi€ A

l< of
In that case one has with N =

A

1 3 2
52 en 0 = o A )

and anything one wants to know can be derived from the Stirling approxima-
tion, and it becomes an easy exercise in elementary probability. If & has the
same parity as N, then
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N!
R CAD I L) o f Y T 37

N (N+k)/2 N (N-k)/2
2<(N+k>/2> ((NA-)/2>

; 1+ &
=2V exp l—x T‘\l()p;(l + k/N)
1=-& k

From that one sees by a simple Laplace approximation that for constant
h; = h, one has that the limiting free energy of the Curie-Weiss model is
given by

it* t 1-t
f(B,h) =log2+ sup /‘—+l:— + log(1+1t)+ ——1log(l—1)|.
te[-1.1] L 2 2 2

In order to appreciate the simplification obtained by the mean-field ansatz.
one has to compare that with the tremendously more difficult analysis in the
ordinary Ising model as they can be found in standard textbooks, see, e.g.. [14].
One aspect, one has however to keep in mind, is that for mean-field models
it is difficult to talk about limiting Gibbs measures, “pure states,” and the
like. This aspect seems to have played a considerable role in the discussions
and controversies whether mean-field spin glasses share some properties with
short-range spin glasses. As I am not very knowledgeable on this subject, I do
not want to comment about this issue, and rather advise the reader to read
the contributions of Newman and Stein in this volume.

Spin glasses are models where the interactions are “disordered,” which
typically means that they are obtained as a random object. A topic which is
still very poorly understood is the case of short-range random interactions. for
instance when A = {—n...., n}d. and the a;; are independent Gaussians for
|i — j| = 1, and 0 otherwise. This is the Edwards Anderson model on which
there are ongoing controversial discussions in the physics community, the more
so as it is very difficult to simulate it on computers with a reasonably large
box and in interesting dimensions. One of the keyv issues is the presence of so-
called “frustrations.” This means that for three sites i.j. k. the interactions
between 7 and j and between j and & may be positive. but between i and
k negative. In particular, in contrast to the Ising model, spin glasses usually
do not satisfy any of the well-known correlation inequalities, like the FKG
inequality:.

The situation is considerably better understood for the random field Ising
model. where the interactions a,; are the same as for the Ising model. but
where the h; are independent Gaussian random variables. On this, there are
now classical results [15, 16], but we will not enter into this subject in this
volume.
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3 The Sherrington—Kirkpatrick Model

The Sherrington-Kirkpatrick model has the “mean-field” random Hamiltonian

N
_HN.ﬂ.h,w dét /an.w (0') + /LZU,.

1=1

where

def 1
Xnw(0) S —= Y JijWw)oio;,
‘FN 1<i<j<N

and the J;; are independent standard Gaussian random variables, defined on
some probability space (2, F,P). (I will constantly use P for the probability
measure governing the disorder, with E as the corresponding expectation.)
We will often drop w and N in such expressions. One first observes that
the 1/v/N-normalization is the right one in order to catch the “spirit” of a
mean-field interaction: The total influence of the spins o, j # 4, on the ith
spin is ’ i

——— Z .],‘J(TJ' + —= Z JJI”_[

\/N J>1 \/N J<t
which is of order 1.

Remark that for any o, Xn (0) is a random variable, and indeed a centered

Gaussian one. The covariances are given by

1 1 1
E(Hy (0) Hy (0') = N Z (7,(7_/'0':0'_: = — Z rr,rr_,rf,/.a; ~%

1<i<j<N ;=1

N/l <N )\ 1 _
—] 2 <NZ,:J (T,‘(Tl> —E. (-3])

The quantity in brackets is the so-called overlap of the two spin configurations

def 1 N
Ry (0,0") lef ¥ ZI:] o0

The (random) Gibbs distribution Gy 550, the partition function Zy 5.1 ..,
and the (finite V) free energy Fy s.5.. are defined as in (2.1)-(2.3).

There exist also variants where h is a random variable or where h le\’:l T
is replaced by Zf\il hio;, where the h; are random variables, e.g., h; = vg;+h,
v >0, h € R, and the g; again being independent standard Gaussian random
variables. This generalization is actually important, because the more general
version appears naturally in the interpolation scheme invented by Guerra (see
Sect. 4.1).

The free energy Fy is still a random variable, and we write

SN (B h) L EFN 4,
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the so-called “quenched” free energy. Sometimes, “quenched” refers to the
random quantity only, but there is not much difference, as we will explain.
In contrast, the so-called “annealed” free energy is obtained by taking the
expectation inside the logarithm. By Jensens’s inequality, fy is dominated
by the annealed free energy.

The model is evidently closely connected with questions probabilists
have been interested in for a long time, namely maxima (or minima) of
(Gaussian) random vectors. For instance, limg_.~ (1/3)log Zn 3.0 is simply
max, Hy (o). which is just the maximum of a family of correlated Gaussians
with a simple covariance structure. Probabilists have developed methods to
investigate such questions for a long time, e.g., Dudley, Fernique, Talagrand.
and many others. It is not difficult to see that max, Hy (o) is of order N and
to prove that there are constants 0 < ('} < (', satisfying

All_n;l?’ ((1‘\ < max Hy (o) < (2;\) = 1.

However, the standard probabilistic techniques cannot derive the exact con-
stant, which the Parisi theory does, revealing a marvelous mathematical struc-
ture behind which is still very poorly understood, to this day.

3.1 Basic Properties of the SK-Model

The first question one typically answers is the existence of the free energy in
the thermodynamical limit (here just N — o0). It is, however, not at all clear
that the free energy

lim Fy (3, h)

N—o0
exists. In principle, even if the limit exists, it could be a random variable.
This possibility is, however, ruled out by Gaussian concentration inequalities.
One says that the free energy is “self-averaging,” meaning that no randomness
remains in the N — oo limit. For a proof of the following inequality, see for
instance [17].
Proposition 3.1. Let v, be the standard Gaussian distribution on R™. Let
f:R"™ — R be a Lipshitz continuous function with Lipshitz constant 1. Then

for any u >0
Yn (f > /f(h,, + 11) < exp [—112/2} .

If we apply this inequality to Fy (3,h), regarded as a function of the
standard Gaussian vector (J;;),_,_ <N then one gets

) “\'1/2
lP’( 2_\'1”1> < 2exp [— - ]

112
It is therefore clear that instead of investigating limiy .~ Fn (3. h). one can
as well investigate the nonrandom object limy .~ fn (/3. h) . The existence of

1
log ZN_J‘[-, — E lug‘ ZN3.h

N N
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this limit had been open for a long time, until Guerra and Toninelli [4] found
a very nice, and not so obvious superadditivity property

Elog Zn,+n, = Elog Zn, + Elog Zn,, (3.2)
from which one easily derives that

f(3.h)= ]\]im SN (3.h)

exists.

For the SK-model, the inequality came somewhat as a surprise. The proof
is by a simple but very clever interpolation scheme which interpolates between
the (N; + N») system and the two independent smaller systems. Such interpo-
lation schemes are at the very base of the recent progress in the understanding
of the SK-model, as we will see later.

There are many quantities in the SK-model which are not self-averaging in
the N — ~o limit, i.e., which stay random (or at least are believed to be so).
An example is the overlap of two independent “replicas.” Take o.0" to be two
independent realizations under Gy 3, .. for a fixed w. and calculate Ry (0.0").
and then take the Gibbs expectation. This is still a random variable (being
a function of the interaction strengths). For small . these random variables
have a nonrandom limit for N — oo, but the limit stays random for large /3.
The case h = 0 has some evident symmetry properties which make life easier,
particularly in the high-temperature region.

For h = 0 and small enough /3. the (“quenched™) free energy equals the
“annealed” free energy, a fact first proved in [18,19].

Theorem 3.2. For h =0, and 3 < 1, one has
2

. o . /- -
[ = ngl; N loglEZ N 5 = e + log 2. (3.3)

The second equation is evident

: /32 . 3 (N 1
= 9N exp [T var (Hy (rr))} = 2N exp {2 < 5 E)}

EZng = Zd Eexp [#Hy (0)] = Zﬂ exp [);_ var (H (0))}

from which the claim follows. The somewhat astonishing fact is that one can
interchange the expectation with the logarithm. Of course, by Jensen. one
always has

Elog Zn 3 <logEZN 3. (3.4)
and therefore f () < 32/4 + log2. We will indeed show later that f(i3) <
32 /4 + log2 for 3 > 1. The proof of the above result is surprising simple
and can be done by a second moment computation, proving that EZ? <
const x (EZ)2 for ;7 < 1. This second moment estimate is easy
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and the part in brackets is bounded for /3 < 1. by a simple Curie Weiss coin
tossing computation. Together with Gaussian isoperimetry (Proposition 3.1.),
this proves (3.3). The original proofs in [18], and [19] were more complicated.
but they derived also a much more detailed picture of the remaining fluctua-
tions of log Z .

There are other models like directed polymers for which one can prove
that the quenched free energy equals the annealed one in certain regions. but
typically, this is not possible by a simple second moment method in the full
region where it is true. The fact that a second moment computation gives the
result in the SK-model up to the correct critical value (for h = 0) is rather
surprising. For h # 0, “quenched = annealed™ is never true, which reveals that
this is a much more interesting situation. even where /3 is small.

3.2 The Replica Computation

The replica trick consists in the observation that for a positive number .
one has
d ot —1
logx = — exp (nlog.x) = lim ——
dn ﬂ nl0 n
n=>0
If X is positive random variable, one therefore has, provided the interchange
of limits is justified
EX" -1
Elog X = lim ———
n|0 n
As integer moments are often more casily evaluated then noninteger ones, the
“trick™ therefore is to evaluate EX" for integer n. somehow extend things
analytically. and performs the above limit.

For the SK-model, this is not quite the way. it is done. In fact. one just
starts the computation of EZ}, assuming that n is an integer. but as soon as
it seems convenient, one gives up this illusion and lets n — 0. before really
finishing the computation. The calculation is easy. but it is hard to swallow
for a mathematician. Here it is

n anN B 4 a o " N o
EZ" =2""Etroexp | — Iij o, 05 +h o5 |l
vIN I<i<j<N =~ a=1 : a=1 =1



