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For Katleen, Charlotte and Sofie.

Preface

The reader taking a first glance at this monograph might have the (wrong)
impression that a lot of topology/geometry is involved. Indeed, the ob-
jects we study in this book are a special kind of manifold, called the
infra—nilmanifolds. This is a class of manifolds that can, and should, be
viewed as a generalization of the flat Riemannian manifolds. However, the
reader familiar with the theory of the flat Riemannian manifolds knows
that such a manifold is completely determined by its fundamental group.
Moreover, the groups that occur as such a fundamental group can be
characterized in a purely algebraic way. More precisely, a group F is the
fundamental group of a flat Riemannian manifold if and only if F is a fi-
nitely generated torsion free group containing a normal abelian subgroup
of finite index. These groups are called Bieberbach groups. It follows
that one can study the flat Riemannian manifolds in a purely algebraic
way.

This group theoretical approach is also possible for the infra—nilmani-
folds, which are obtained as a quotient space under the action of a group E
on a simply connected nilpotent Lie group G, where E acts properly dis-
continuously and via isometries on G. (If G is abelian, then this quotient
space is exactly a flat Riemannian manifold). The fundamental group
of an infra—nilmanifold is referred to as an almost-Bieberbach group. It
turns out that much of the theory of Bieberbach groups extends to the
almost—Bieberbach groups. Thus for instance, a group E is the funda-
mental group of an infra—nilmanifold if and only if F is a finitely generated
torsion free group containing a normal nilpotent subgroup of finite index.

The aim of this book is twofold:

1. I wish to explain and describe (in full detail) some of the most im-
portant group—theoretical properties of almost-Bieberbach groups.
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I have the impression that the algebraic nature of almost—Bieber-
bach groups is far from well known, although many of their proper-
ties are just a straightforward generalization of the corresponding
properties of the Bieberbach groups. On the other hand, I do not
claim to be a specialist of Bieberbach (or more general crystallo-
graphic) groups and so a lot more of the theory of Bieberbach (crys-
tallographic) groups still has to be generalized. I hope therefore that
this book might stimulate the reader to help in this generalization.

. I also felt there is a need for a detailled classification of all almost—

Bieberbach groups in dimensions < 4. We will see that an infra—
nilmanifold is completely determined by its fundamental group. So
my classification of almost-Bieberbach groups can also be viewed
as a classification of all infra—nilmanifolds of dimensions < 4. 1
myself use the tables of almost—Bieberbach groups not really as a
classification but as an elaborated set of examples or “test cases”
for new hypotheses. I hope that, one day, they can be of the same
value to you too.

I tried to write this monograph both for topologists/geometers as for
algebraists. Therefore, I made an effort to keep the prerequisites as low
as possible. However, the reader should have at least an idea of what a Lie
group is. Also, a little knowledge of the theory of covering spaces can be
helpful now and then. From the algebraic point of view, I assume that the
reader is fairly familiar with nilpotent groups and that he is acquainted
with group extensions and its relation to cohomology of groups.

Although this work is divided into eight chapters, there are really

three parts to distinguish.

1. In the first part (Chapter 1 to Chapter 3), we define almost—crys-

tallographic and almost-Bieberbach groups. We spend a lot of time
in providing alternative definitions for them. Also we show how the
three famous theorems of L. Bieberbach on crystallographic groups
can be generalized to the case of almost—crystallographic groups.
These first chapters could already suffice to let the reader start his
own investigation of almost—crystallographic groups.

. Chapter 4 forms a part on its own. It deals mainly with my own

field of interest, namely the canonical type representations. These
are representations of a polycyclic-by—finite group (in our situation
always virtually nilpotent), which respect in some sense a given
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filtration of that group. We discuss both affine and polynomial rep-
resentations and present some nice existence and uniqueness results.
The reason for considering polycyclic-by—finite groups is natural in
the light of Auslander’s conjecture.

3. The last part of this monograph (Chapter 5 to Chapter 8) describes
a way to classify almost—Bieberbach groups. We also give a com-
plete list of all almost—Bieberbach groups in dimensions < 4, which
were obtained using the given method. Moreover, we show how it
was possible to use these tables and find in a pure algebraic way
some topological invariants (e.g. Betti numbers) of the correspond-
ing infra—nilmanifolds.

Finally, I would like to say a few words of thanks. To Professor
Paul Igodt who introduced me to the world of infra-nilmanifolds and
who proposed me to investigate the possibility of classifying the almost—
Bieberbach groups. I am also grateful to Professor Kyung Bai Lee, since
I owe much of my knowledge on almost—Bieberbach groups to him. But
most of all I must thank my wife Katleen, for her encouragement when
I was doing mathematics in general and especially for her support and
practical help when I was writing this book.

Karel Dekimpe,
Kortrijk, August 19, 1996
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Chapter 1

Preliminaries and
notational conventions

1.1 Nilpotent groups

In this first chapter we discuss the fundamental results needed to under-
stand this book. Owur primary objects of study are virtually nilpotent
groups. Remember that a group G is said to be virtually P, where P is a
property of groups, if and only if G contains a normal subgroup of finite
index which is P.

Although we assume familiarity with the concept of a nilpotent group,
we recall some special aspects of this theory in order to fix some notations.

Let N be any group, then the upper central series of V

ZJN): Zo(N)=1C Z;(N)C---C Zi(N)---
is defined inductively by the condition that
Zi41(N)/Zi(N) = Z(N/Zi(N))

where Z(G) denotes the center of a group G. The group N is said to
be nilpotent if the upper central series reaches N after a finite number
of steps, i.e. there exists a positive integer ¢ such that Z,(N) = N. If ¢
is the smallest positive integer such that Z.(N) = N, we say that N is
c—step nilpotent or N is nilpotent of class c.

Another frequently used central series is the lower central series. This
series uses the commutator subgroups of a group N. We use the conven-
tion that the commutator [a,b] = a='b~'ab for all a,b € N. Conjugation
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in N with a is indicated by p(a). Sometimes we use 6 = a lba =
u(a)(b).

The lower central series of N is the central series
N=7(N)27(N)2:---D%(N)2D---

where the i—fold commutator subgroups v;(/N) are defined inductively by
the formula

Yir1(N) = [N, %i(N)]-
The groups we are interested in are the finitely generated torsion free
nilpotent groups for which it makes sence to consider central series

Ne: 1=NoC N CN, C---CNe=N

with torsion free quotients N;/N;_; for 1 < ¢ < ¢. We will refer to such a
central series N, as a torsion free central series.
Given such a torsion free central series, there exists integers k; € Z

such that N;/N;_; = 7ZF . We write K; = Z k;. We also write K for K1,
321
which is the rank or Hirsch number of .
A set of generators

{al,h A1,29029Q1 k13 Q2190029 @2 ky3A3 194+, ac,kc}
of N will be called compatible with N, iff
Vie{1,2,...,¢}: a11,a1.2,...,0;k generate N;.

It is clear at once that any torsion free central series of N admits a
compatible set of generators. Such a compatible set of generators may
be obtained in the following way: First we choose k; generators of IVy,
say @1,1,a1,2,--.,01,k - Lhen we complete this set to a set of generators
for N,. So we have to choose elements aj1,...a3,. We continue this
way and finally we find the last k. generators a1,...,a.k,. Any element
n € N can now be written uniquely in the form

n= af‘l"af,;‘z ...a;fl,;:‘ € N, for some z;; € Z.

This shows that we may identify n with its coordinate vector
K

(B1.09P0.2% o o0 s B Loy 4 BB L5500 5By w v 5y Biogkee ) € Y/

For all torsion free finitely generated nilpotent groups IV, the upper
central series determines a torsion free central series, while in general the
lower central series fails to have torsion free factors. However, we can
alter the lower central series slightly in order to get a torsion free central
series. To explain this we need the concept of the isolator:
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Definition 1.1.1 (see also [56], [59])
Let G be a group. For H a subgroup of G, the isolator of H in G
(sometimes called the root set) is defined by

s/_ﬁ:{geGHngHforsomekZH.

In general, the isolator of a subgroup H in G doesn’t have to be a subgroup
itself. E.g. if H = 1 then V/H is exactly the set of torsion elements of G,
which needn’t be a group in general. We will only need the isolator of a
commutator subgroup.

Lemma 1.1.2 Let G be any group. Then,

1. Yk € No: {/7k(G) ts a characteristic subgroup of a.
2. Yk € No: G/ §/7k(G) is torsion free.
3. Yk,l € No: [ {/%(G), ¥(G)] € Y 1n(G).

For the proof of this lemma we refer the reader to [56, page 473].
It follows that for any finitely generated, torsion free c-step nilpotent
group N the series

Vrer1(N) =1 C /7 \/’72 ’{/71(N): VN =N

is a torsion free central series. We will refer to this series as the adapted
lower central series.

For any group G, the groups {/7;(G) can be determined by means of a
universal property. Write 7;(G) = G/ {/7:+1(G) and denote the canonical
projection of G onto 7;(G) by p. The group 7;(G) is the biggest possible
torsion free quotient of G, which is nilpotent of class < . Formally

Lemma 1.1.3 Universal property of 7;,(G).

Let G be any group and suppose that N is a torsion free nilpotent group
of class < 1. Gwven a group homomorphism ¢ : G — N, there exists a
unique morphism v : 7;,(G) — N such that ¢ = ¢ o p. Le. the following
diagram commutes:

T.;(G)
(2
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Proof: As N is nilpotent of class < i, all 7 + 1-fold commutators are
mapped trivially. So the morphism ¢ factors through G/v;4+1(G). Also,
as NV is torsion free, the characteristic subgroup 7(G/7v;+1(G)) consisting
of all torsion elements of G/7v;(G) is mapped trivially. Therefore, there is
a factorization

01 G = G/7:11(G) = (G/1:1(G))/7(G/1e1(G) = N (L.1)

But §/7:+1(G) consists exactly of those elements which are mapped into
the set of torsion elements 7(G/v;4+1(G)) under the canonical projection
of G onto G/v;41(G). So,

(G /7i41(G \/’h+1 G)/vi+1(G

from which it follows that the factorization (1.1) mentioned above can be
written as:
(p:Giwri(G)i»N.
This establishes the existence of the map . The uniqueness is obvious.
|

The above proposition determines the subgroup $/7;1+1(G) of G com-
pletely. For suppose there exists another normal subgroup A of G (to-
gether with a canonical projection ¢ : G — G/A), such that any morphism
¢ : G — N as above can be written in the form ¢ = 9’ 0q. In this case let
N be equal to G/ §/7:+1(G) and let ¢ = p. It is obvious that the map ¢’ in
this case maps the coset g A onto g §/7;,1(G), for all g € G. By reversing
the roles, we obtain a morphism ¢ : G/ {/7i+1(G) — A: g ¥7i+1(G) —
g A, which is the inverse of ¢'. Therefore, the groups 4 and §/v;4+1(G)
coincide. As an application of the above universal property we find:

Lemma 1.1.4 Let G be any group.
For all j > 1, there is a canonical isomorphism

7i(7i(G)) = 1(G).

It follows that for G = ¢/v;41(G)

15 Yit+1 G/G \/71+1(G
Proof: By the universal property of 7;(G) there is a canonical morphism
c1: 7i(G) = 7i(7(G))

which maps the coset of an element g of G onto the coset of ¢ G in
7;(7;(G)). Conversely, we have the following commutative diagram
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G 75(G)

7i(735(G))

7i(G)

where

1. the non labeled arrows are canonical projections onto a quotient
group.

2. cis induced by the fact that §/v;;1(G) is contained in §/7;+1(G)
(7 = 1) '

3. ¢ is obtained by the universal property of 7;(7;(G)).

It is clear now that ¢; and c, are each others inverse. The last claim of
the lemma, concerning the equality of the two subgroups of G /G, follows
from the comments preceding this lemma.
|
The following technical lemmas will be needed at special occasions
during our treatment of almost—crystallographic groups.

Lemma 1.1.5 Let H be a torsion free, normal subgroup of finite index
in a group G. Assume z € Z(H) and 2 € G such that [z,z] # 1. Then
any commutator of the form (z,|...[z, [z, z]]...] is not trivial.

Proof : Consider the sequence (c;), y in Z(H) defined by co = z and
¢i+1 = [z, ¢;]. We proceed by induction. Assume ¢; # 1 and ¢;;; = 1 for
1> 1. If [G: H] = m, 2™ € H and hence it commutes with ¢; ;. A
trivial computation shows that

m Z _ T _ m
1= [e™,eq] = H[:c,c,-_l] = H c; ="
3=1
Since H is torsion free ¢; = 1, which is a contradiction.

Lemma 1.1.6 If 0 - H - G — K — 1 determines G as a central
extenston of an abelian group H by a group K which is nilpotent of class
< ¢, then G is nilpotent of class < (c+1).

The proof is straightforward and left to the reader.
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Lemma 1.1.7 If 1 - H - G — Zj — 1 determines G as a nilpotent
eztension of a torsion—free, c-step nilpotent group H by a finite cyclic
group, then G itself is c-step nilpotent.

Proof : The proof goes by induction on the nilpotency class of H. So,
assume H is abelian. Take g € G and h € H. If [g,h] # 1, lemma
1.1.5 implies that G is not nilpotent. Consequently, it follows that the
extension is a central one. Having chosen a section s : Zj — G, elements
g € G can be written as hs(z') (h € H, z is a generator of Z; and
0 <1< k—1). Now, it is clear that if g; and g, are in G, [g1,92] =
[s(z"1), s(z")]. Since s(z)" and s(z') belong to the same coset of H, it
follows that [g1, g2] = [s(z)", s(z)"2] = 1, so G is abelian.

Now assume H is of class c. Lemma 1.1.5 implies that Z(H) C Z(G)
when G is nilpotent. Consider the short exact sequence 1 — H/Z(H) —
G/Z(H) — Zy — 1. Here, H/Z(H) is torsion—free (¢ — 1)-step nilpotent.
By induction G/Z(H) itself is (¢ — 1)-step nilpotent. Apply lemma 1.1.6
to the extension 1 - Z(H) - G — G/Z(H) — 1 and deduce that G is
nilpotent of class < c.

|

Lemma 1.1.8 Let G be any group and suppose that T is a torsion free
normal subgroup of G, while F 1s a finite normal subgroup of G. Then

(T, F)=1.
Proof: Let t € T and f € F, then
t, fl=t ff=tfHfecTNnF=1
eF eT

Lemma 1.1.9 Let ¢ be any automorphism of Zk. If there exists a sub-
group A of finite indez in ZF on which o 1is the identity, then ¢ is the
wdentity automorphism.

Proof: ¢ can be represented by an invertible matrix M with integral
entries. Seen as an element of Gl(n,R), this matrix represents a linear
mapping leaving fixed a generating set (i.e. A) of the real vector space
R™. This implies that M is the n x n-identity matrix.

|
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1.2 Nilpotent Lie groups

Although we intend to keep the topological /geometrical background need-
ed to understand this book as small as possible, we need at least some
knowledge concerning nilpotent Lie groups. In fact, most of the stuff we
will use can be found in the magnificent paper of A.I. Mal’cev [51]. We
refer to this paper for all the proofs of the claims we make here.
Throughout this section G will denote a connected and simply con-
nected nilpotent Lie group. We use g to indicate the Lie algebra of G.
This Lie algebra g has the same dimension and nilpotency class as G.
Moreover, in the case of connected and simply connected nilpotent Lie
groups it is known that the exponential map exp : g — G is bijective. We
denote its inverse by log. The exponential map earns its name because of
the fact that for matrix groups/algebras the exponential map is indeed
given by the exponentiation of matrices. Le. exp(4) = Y ne %.
If H is another connected and simply connected nilpotent Lie group, with
Lie algebra fj, then we have the following properties:

e For any morphism ¢ : G — H of Lie groups, there exists a unique
morphism dy : g — [) (differential of ¢) of Lie algebras, making the
following diagram commutative:

G _99) H
log l T exp log J/ T exp (1.2)
g — f)

e Conversely, for any morphism dy : g — h of Lie algebras, there
exists a unique morphism ¢ : G — H of Lie groups, making the
above diagram commutative.

In G, it makes sense to speak of a® where a € G and z € R. (E.g.
consider the one-parameter subgroup of G passing through a). A formal
definition may look as follows:

Definition 1.2.1
a® = exp(zloga), VYa € G, Ve € R.
The definition satisfies all the expected conditions:

l.aal'=atla=1; a® = 1,
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2. a"=a.a...a,ifnc N,

n times
1\n .
3. (an) =a,ifn e N,
4, (a®) = a™¥,
5. a®.a¥ = a*t¥,

6. If o : G — H is a morphism between connected and simply connec-
ted nilpotent Lie groups, then p(a®) = (¢(a))*.

We give a proof of this last property, using the commutative diagram
(1.2):

¢(a®) = ¢p(expzloga)
= exp(dy(zloga))
= exp(zdyp(loga))
= exp(zlog(p(a)))
= (p(a))®.

We also mention the famous Campbell-Baker-Hausdorff formula:.
VA, B € g: exp(A).exp(B) = exp(Ax B), (1.3)
where -
AxB=A+B+ %[A,B] +mz::36'm(A,B).

Here C,,(A, B) stands for a rational linear combination of m—fold Lie
brackets in A and B. Since our Lie algebras are nilpotent, the sum
involved in A * B is always finite. As an immediate consequence of this
formula, one sees that

Va,b € G: log(a.b) =loga xlogb.
Of major importance to us, is the concept of a uniform lattice of G.

Definition 1.2.2 Let G be a connected and simply connected nilpotent
Lie group. A uniform lattice of G s a uniform discrete subgroup, t.e. a
discrete subgroup with compact quotient, N of G.
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We remark that not all connected and simply connected nilpotent groups
admit lattices.

One of the nicests results of Mal’cev is the “unique isomorphism extension
property”

Theorem 1.2.3 Let G and H be two connected and stmply connected nil-
potent Lie groups. Suppose moreover that N and M are uniform lattices
of G and H respectively. Then any tsomorphism ¢ : N — M eztends
uniquely to an isomorphism of Lie groups of G onto H.

In case we use this property for M = N, we also say “the unique auto-

morphism extension property ”.
V.V. Gorbacevit ([33]) generalized this theorem as follows:

Let N be a uniform lattice of a simply connected, connected
nilpotent Lie group G and let H be an arbitrary simply con-
nected, connected nilpotent Lie group. Then any morphism
@ : N — H extends uniquely to a morphism G — H.

Mal’cev also describes all possibilities of uniform lattices in a connected
and simply connected nilpotent Lie group.

Theorem 1.2.4 Any lattice N of a connected and simply connected nil-
potent Lie group G is a finitely generated torsion free nilpotent group.
Conversely, for any torsion free finitely generated nilpotent group N there
exists (up to tsomorphism) ezactly one connected and simply connected
nilpotent Lie group G containing N as a uniform lattice. We refer to this
G as the Mal’cev completion of N.

Let N be a torsion free and finitely generated nilpotent group with a
torsion free central series IV, as in the previous section. Suppose moreover
that

{(11,1, Q1,29+ 2901 ,k;5 2,15+ -+, ac,kc}

is a set of generators compatible with N,. Then the elements

{A1,1 = log(am), A1,2 = log(a1,2), ey Ac,kc = log(ac'kc)}

form a basis for the Lie algebra g of the Mal’cev completion G of V. It

follows that any element g of G can be written uniquely in the form
g=ua7 a:fz'z ...a;"l,;fl for some z; ; € R.

Any element can thus be identified with a coordinate vector

K
(xl,hwl,Za"-’xl,kl’wZ,la---,zi,j,"°’mc,kc) € R™.



