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Preface

This book has been written to aid stude i during the second year of study

for an engineering degree. The tex' - sty concerned with linear
systems with a single degree of fres: - “rapier on systems with two
aegrees of freedom has been incii i+, even though this subject may be

studied in the third year of somc courses.

Each chapter of the book possesses three distinct parts. Firstly there is
some introductory theory giving background to the worked examples
which form the second and most important part. Finally, at the end of
each chapter, there are exercises to enable the student to obtain experi-
ence in solving problems. The worked examples described in this book
are mostly based on examination questions. We do not intend to provide
model solutions of the kind that the student might hope to provide for his
examiners. We aim to show how the principles of mechanics are applied
to solving problems in vibration. In many of the worked examples we give
a full explanation of each step in the solution procedure. We sometimes
provide alternative solutions or digress to discuss interesting aspects of
the problem.

In this book the method of solution is mostly through free-body
diagrams which are used as an aid to writing the equations of motion.
However, in Chapter 4 energy methods are also discussed. in writing the
differential equations the ‘dot’ notation is used to indicate uiiferentiation
with respect to time. A bold symbol indicates a vector.

We are indebted to thie Registrar of the City University for perm:sston
to include examination problems which have previously occurred in
examination papers of the University. Many of these cxamination prob-
lems have been written by our colleagues in the Department of Mechani-
cal Engineering at the City University. We have had a wide selection to
choose from and we are very grateful to our colleagues for the work they
have done over many yzars. In particular we should like to acknowledge
the help of J. E. Cannell, G. T. S. Done, I. W. Graham, H. R. Harrison,
B. G. Main, T. Nettleton, D. W. Oates, A. R. D. Thorley, R. G. P.
Weighton and L. J. Wilkins.

Finally, we submit this book to our readers with a certain amoum of
humility. We realize that it is easy for questions to seem contrived and
even ridiculous. A cautionary example is quoted by Max Born in his book
My Life: Recollections of a Nobel Laureate, Scribner’s 1978: ‘On an
elastic bridge stands an elephant of negligible mass: on his trunk sits a
mosquito of mass m. Calculate the vibrations of the bridge when the
elephant moves the mosquito by rotating his trunk.’
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1

Free, undamped vibrations of
systems with a single degree of
freedom

1.1 Single degree of freedom system

A mechanical system that requires n co-crdinates to define its position at
any instant in time is said to have n degrees of freedom. In Figure 1.1(a)
the rigid body on the end of the spring can move up or down along the axis
YY. This forms a rectilinear system in which one co-crdinaic vis required
to define the position of the body. The position of the budy at any instant
is hence defined in terms of the co-ordinate y. and the system is thus said
to have one degree of freedom.

In Figure 1.1(b) a rotational system is shown with onc degree of
freedom. Here a light, elastic shaft, rigidly fixed at one of its ends.
supports a rigid flywheel which has a certain moment of inertia. As the
shaft twists, a line OA on the flywheel moves to OA’ through an angle 6.
6 is the one co-ordinate which is sufficient to dcfine the position of every
point on the fiywheel at any instant in time.

A compound pendulum is also a system with a single degree of
freedom. The position of the centre of mass G can be defined if one

!
774, VA 1A,
Eiastic shaft
acts as torsional
y Spring spring
| Rigid
- | Rigd flywheel
| body
[
i
IY
(a) (b)

Figure 1.1 System with asingle degree of freedom: (a) rectilinear, {b) torsional.
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Figure 1.2 System with two degrees of freedom.

co-ordinate is known, namely the angle # which is the anguiar displace-
ment of the rigid body (compound pendulum) from its vertical position.
See ahead to Figure 1.17 for a diagram of a compound pendulum.

However, the rectilinear system of Figure 1.2 has two degrees of
freedom. If the rigid body 1 is displaced downwards or upwards there are
still infinitely many possibilities for the position of body 2. Each of the two
bodies may move independently in the vertical direction. Two co-ordi-
nates y; and y, are needed to define the position of the system at any
instant of time.

1.2 Undamped system F

“
In this chapter we shall not take into account damping forces whith cause -
energy dissipation in mechanical systems. There will be no loss of energy

and once a vibration is started it will be maintained for all time. An

undamped system with a single degree of freedom gives rise to a type of

motion known as simple harmonic motion, in which the acceleration of}
the body is proportional to the displacement (y or 8) with negative sign.

1.3 Springs

A massless, elastic element is a fundamental component in the vibrating ,
systems described in this book. In Figure 1.1(a) there is a diagrammatical
representation of a helical spring with metal coils. Such a spring is
normally linear, i.e., its extension or compression is proportional to the
force applied. The ratio of applied force to resulting deflection is a
constant called the spring constant or stiffness. Most rubber springs are
non-linear and become stiffer (or harder) as a sufficiently large force is
applied. Softening springs are also possible. The relationships between
force and deflection for all cases are shown in Figure 1.3.

A rod or wire of elastic material acts as a linear spring, provided that
the elastic limit is not exceeded. Let us assume that when a force F is
applied along the axis of the rod or wire there is an extension or

2 SOLVING PROBLEMS IN VIBRATIONS



Example 1.1
Stiffness of beam

Non-linear, hardening spring

2 Linear (e.g. helical spring)
Force
Non-linear, softening spring
Deflection
(= Compression) / (Exterision -=)

Figure 1.3 Force—deflection relationships for different springs.

compression y. The ratio Fly is the stiffness of the rod and is related to
cross-sectional area A of the rod, its length / and Young’s modulus E, a
characteristic factor of the elastic material, in the following way:

stiffness = Fly = EA/l (units — N/m),
where )
E = stress/strain = (F/A)/(y/l) = FllyA.

Similarly, a torsional spring in a rotational system (Figure 1.1(b)) hasa
rotational stiffness which is provided by the shaft {or wire) as it twists
about its axis. This torsional stiffness is defined as the ratio of a torque T
to an angle of twist #induced in the shaft by the torque, and is given by:

T/6 = Gl,/l (units — N m/rad),

where G is the modulus of rigidity, I, 1s the polar second moment of area

(wd*/32 for a wire or circular solid shaft of diameter d) and / is the length
of the wire or shaft which is twisting.

A wooden beam of length 2 m is simply supported at its ends. The
beam is rectangular in cross-section, 300 mm wide by 30 mm thick.
Young’s modulus E is 11 x 10° Pa. If a concentrated load of 300 kg
is attached to the beam at the middie what is the equivalent stiffness
of the beam?

.~

Solution A standard textbook on strength of materials (for example,
Mechanics of Solids and Structures by P. P. Benham and F. V. Warnock-
(2nd edn), Pitmans 1973, or Strength of Materials and Structures by
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J. Case and A. H. Chilver, Edward Arnold 1971) will state that the
deflection y at the centre of a simply supported beam of length / caused by
aload F at the centre is given by:

y = FI’/(48EI),

where 7 is the second moment of area of the beam cross-section.
The cquivalent siitfness k = 48E1/I°. In this example,

1 = (300 x 30)(30%12) x 1072 m*
= 675 x 10~° m*,

k = (48 x 11 x 10° X 675 x 107%)/2?
= 44.55 kN/m.

Answer Stiffness of the beam is 44.55 kN/m.

1.4 The basic differential equation of the motion

The spring mass system of Figure 1.1(a) is a basic arrangement. In the
static equilibrium position the spring of stiffness k is extended by y, and
the forces acting on the body are shown in Figure 1.4(a).

For the case of static equilibrium (see the free body diagram of Figure

1.4(a)):
mg — ky, = 0.

If the body is displaced by, for example, y, downwards from the equilib-
rium position, the forces are now as shown in Figure 1.4(b). There is no
longer static equilibrium and the body accelerates. Applying Newton’s
second law, we obtain the following differential equation of motion of the
system:

mg — k{yp +y) = my

and finally
—ky = my, v [1.1]
T kyo
Equilibrium position
klyg+y) k-Y
l v
mg
v
Yy ¥ mg
(a) (b) (c)

Figure 1.4 Free-body diagrams for body on spring: (a) in static equilibrium; (b)
dynamic case showing a.’ forces; (c) dynamic case showing only oscillating force.
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Example 1.2
Mass-spring system
with different initial
conditions

wincdn 1> Lue equation tor simple harmonic motion and can be written as:
v+ (kim)y = 0. [1.2]

Equation (1.2) is a linear, second-order differential equation with con-
stant coefficients.
For a given system the ratio k/m may be denoted by w; so that we have:

V + wiy = 0. [1.3]

w, is called the undamped circular natural frequency and has the units of
rad/s. It should not be confused with f, , the undamped natural frequency,
which has units of Hz (an abbreviation forhertz and previously known as
cycles/second). With or without subscripts w and f are related by the
following expression:

w = 27f.

You may find other expressions for circular frequency, such as angular
frequency, radiancy or pulsatance.

It is possible to write down equation [1.1] immediately by analysing the
free body diagram in Figure 1.4(c). The forces mg and ky, exist all the
time, and always cancel each other out. Equation [1.1] only contains
terms whose values oscillate during the vibration. In general solutions will
be obtained more quickly by omitting these constant forces. However,
there are some problems where the weight needs to be considered: for
example, in problems involving inverted or compound pendula. In these
cases the moment of the weight is varying.

1.5 Solution of the differential equation

The general solution of equation [1.3] is known to be in terms of
trigonometric functions and two arbitrary constants. Thus,

y = A cos w,t + B sin w,t. [1.4]
An alternative formula is: ‘
vy = X cos (w,t — D), [1.5]

where the two constants are now the amplitude X (=(A% + B?)"%) and
the phase angle ® (=tan™! B/A).

The values of the constants must be found from the initial conditions.
Thus att = 0 we need to know the values of y and y, as two separate initial
conditions are required for a second-order differential equation.

A body of mass 4 kg is supported on springs, which have an
equivalent stiffness of 2500 N/m. (a) The mass is ihitially displaced
downwards by 100 mm from the equilibrium position and then
released. (b) The body is struck by an impulse of 10 N s which acts
vertically downwards. In both cases determine the expressions for
the displacements. s

»
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Solution The diagrams of Figure 1.4 apply, so they will not be repeated.
m = 4 kg and k = 2500 N/m, hence w; = 625 and w, = 25 rad/s. Equa-
tion [1.3] becomes now:

y+ 625y =0
and the general solution of this equation is:
y = A cos 25t + B sin 251, [1.6]

where y is the displacement of the body from the static rest position. An
expression for the velocity is obtained by differentiating the above
equation [1.6]. Hence, '

y = —25A sin 25t + 25B cos 251. ' [1.7]

(a) Fort=0,y=0.1m.
From equation [1.6],
01=A+0
and '
A=01
As the body was initially at rest, forz = 0, y = 0. From equation [1.7],
0=0+25B
and
B =0.
The expression for the displacement is finally:
y = 0.1 cos 25¢.
Comparing the above expression for the displacement with equation [1.5]
one can deduce that the amplitude is 0.1 m and the phase angle is 0.
(b) ¢ =0,y = Obecause the body is not displaced during the applica-
tion of the impulse (remember an impulse exists for a very short time).
From equation [1.6],
0=A+0
and
A =0.
The integration of Newton'’s second law with respect to time leads to the
relation:
Impulse = change in momentum
Hence,

10 = 4(y(0) — 0),

6 SOLVING PROBLEMS IN VIBRATIONS



where y(0) is the velocity immediately after the imbact‘ Therefore,
7(0) = 2.5 m/s.
From equation [1.7], fort = 0

2.5 =25B
and
B =0.1.
Therefore,
y = 0.1 sin 25¢
or
y = 0.1 cos (25t — =/2).

In this case (with the cosine) the amplitude is still 0.1 m, and by
comparing with equation [1.5] it can be seen that the phase angle is 90°.
The displacement discussed in part (b) lags by a phase angle of 90° the
displacement obtained in part (a), as shown in Figure 1.5.

y(mi 4

0.1 cos 25t
0.1 "\ 01 .
) \\ A sin 25t
/
\
9 Y —
\ Time t [s]
/
-0.1+ ~
3
Time period T |
_2r _ 2
w, 25

Figure 1.5 Displacement against time for spring-mass system.

1.6 The plane-motion equations

So far we have mostly been concerned with the rectilinear motion of a
body on a spring. Many prcblems in this book will deal with plane motion
or motion in two dimensions. The three equations that describe the
dynamics of a rigid body in a plane (xy) are derived from Newton’s laws
of motion and are:

S F, = mig (2 F,, force components in x direction) [1.8]
2 F, = myg (2 F,, force components in y direction) [1.9]
3 Mg = 156 (£ Mg, moments about the rotation axis through

the centre of mass G). {1.10]

FREE, UNDAMPED VIBRATIONS OF SYSTEMS 7



where the body has mass m and moment of inertia /; about the rotation
axis through the centre of mass G (perpendicular to the xy plane). The
moments are about the same axis. Note that the term rotation axis here is
defined as an axis perpendicular to the plane of motion of the rigid body.
The position of the centre of mass G of the body has the co-ordinates
(xg, vg)- The components of acceleration of G in the x and y directions
are ¥g and ji;, respectively. The angular acceleration of the body is .
Further details on these equations and their applications may be obtained
from books on mechanics such as Dynamics by J. L. Meriam (2nd edn),
Wiley 1975, or Principles of Engineering Mechanics by H. R. Harrison
and T. Nettleton, Edward Arnold 1978. When there is rotation-of a rigid
body zoout a fixed axis through point O one may take moments about the
fixed rotation axis, so the equation of motion is:

where I is the moment of inertia of the rigid body about the axis of
rotation through O. In fact equation [1.11] also applies when, e.g., the
axis has a constant velocity.

The parallel-axes theorem is used to relate /g and /.

10 = IG + mdz, . [112]

where d is the distance between the parallel axes through O and G.

In many problems it is useful to find the instantaneous centre of
rotation or the instantaneous centre of zero velocity, C. For a wheel, that
rolls without slipping, C occurs at the point of contact with the ground. as
shown in Figure 1.6(a). Provided the centre of mass coincides with the
geometric centre of the wheel the following equation is allowed:

S M = 1.6, [1.13]

where I is the moment of inertia about the rotation axis through the
instantaneous centre of rotation and M is a moment about the same axis.
Equation [1.13] also applies in the case of a spool unwinding from a rope,
where C is iocated as shown in Figure 1.6(b).

L2022

Z

(a) (b)

Figure {.6 Location of instantaneous centre C for (a) rolling wheel, (b) spool
unwinding.
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Example 1.3

Natural frequency of a

system with roiting

: .

Determine the undamped natural frequency of small oscillations of
the system shown in Figure 1.7(a}. The uniform disc of mass m has
two springs attached as indicated. Assume that the disc rolls without
slipping. ' '

F

. 2
A r/ P 2% -
7 o R § 2k(2r)8
, MW
7 / N\ v e iy
/ 7 ol N\
A K , 0 / N
/’1,_ A ’\ A __£ ; \ 1% :,i:‘ ¥ 1
v VVV Y \ = | 4 o *’"G’;*’?.“""‘“
7 \ / in
/ N ¢ Ly */ng
%, - 3 A 5]
i o N
(@) b
Figure 1.7 (a) Diagram for Example 1.3: {b) frce-body disgram for disc in

Example 1.3.

Solution  As the wheel rolls on the hortzonat surface i
of the centre of the wheel is #8. The spring of stifin
point on the top of the wheel. The horizonts) component of the displ,
ment of this point is approximately 2r6 for smail osciliations. The poinit o7
the wheel in contact with the surface is the ‘instantancous.centre of
rotation C. This point is shown on the free-bdv diagram of Figure 1.7(b).
If we take moments about the axis of rotation through { the only forces
that are invelved are the two spring forces, provided the angle 613 small.

I for a uniform disc about the axis through its mass centre is mr2/2;
hence by equation [1.12}:

iched ty a

Ic = mri2 + mr®.

1t should be noted that the centre of mass coincides with the geometrical
centre of the disc. Therefore, equation [1.13] leads to:

—2r(4kr8) - r{kr8) = 1.5mr*d

or

~9kr-26' = 1.5mr?9
or

8 + (6kim)4 = 0,

w, = (6kIm)"?,
and

fa = {M(Q2m)}(6kIm)>>.

FREE, UNDAMPED VIBRATIONS OF SYSTEMS @
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The same result may be obtained by using equations [1.8] and [1.10]:

—F — kr0 — 4kr6 = mré,
+Fr — r(4kr6) = Ig6.

Multiplying the first equation by r and addmg give:
—9kr%0 = 1.5mr% »

. as before.

Answer Undamped natural frequency is {1/(27)}{6k/m)’*.

Example 1.4 . . . ..
Natural frequency of a One end of a solid steel shaft is fixed and a uniform steel disc is
torsional system attached at its centre to the other end of the shaft. Dimensions of the

shaft and disc are shown in Figure 1.8(a). The modulus of rigidity G
for steel is 8 x 10'° Pa and the density of steel is 7.8 x 10° kg/m’.

Determine the natural frequency of torsional oscillations of the
System. ~

Solution Moment of inertia I of the disc about the XX axis is 0.5mr? or

I—OS(78><103><1rx00902><0005)(0090)2
= 4.019 x 1073 kg m?.

Torsional stiffness s of the shaft is given by:

s = GL/l = 8 x 10°(m x 0.012%/32)/0.2
= 8143 N m.

The fiee-body diagram for the disc is shown in Figure 1.8(b). From
equation {1.11]: .

—s0 =16
or

6 + {814.3/(4.019 x 107%)}6 =10

" Shaft (length 200 mm,
diameter 12 mm)

™ Disc (diameter 180 mm,
(a) thickness 5 mm) (b)

Figure 1.8 (a) Diagram for Example 1.4; (b) torque and angular acceleration on
the disc.
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