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Preface

Unlike physies, chemistry has attracted many persons who are not particularly
adept or interested in mathematics. To these people, most of the literature dealing
with molecular orbitals is distasteful, if not actually repulsive. Yet the concept of
spin-paired canonical molecular orbitals obtained from self-consistent-field (SCF)
calculations offers considerable insight into the electronic structure of matter,
particularly molecular structures, When we first started to make plots in which
the electron density in a cross-sectional plane passing through a molecule is plotted
at right angles to that plane, we became enamored with the relatively high informa-
tion content of this method of representing not only total electron densities but
the densities of the various molecular orbitals. The Confucian maxim that “one
picture is worth ten-thousand words” seems to us to be indeed true concerning
cross-sectional electron-density plots. Therefore this book is primarily a picture
book, with just enough text to alert the reader to some of the items he should be
looking for in these plots.

In this book, we have attempted to address everyone interested in the electronic
structure of molecules. We feel that the omission of all mathematics is really an
advantage since this information is readily available elsewhere (e.g., see the books
by Schaefer and by Pilar referenced on p- 11) and would not be of value to either
the neophyte or initiate in quantum chemistry. We believe that the illustrations
included in this book will be of service in explaining electronic structure to college
undergraduates even at the freshman level. We have found this to be true in our
own teaching, and believe that SCF molecular orbitals as depicted in this book are
no more difficult for the rank beginner to understand than are the rather shopworn
but basically equally valid concepts of atomic hybridization and chemical bonds
now being purveyed. The molecular orbitals have the advantage of emphasizing the
diffuse nature of the electrons as well as the role of this diffuseness in the bonding
process.

Throughout much of Chapters 2 and 3 we have tried in words to relate each
valence-shell molecular orbital to its dominant chemical-bonding contribution in
order that experienced chemists (in both industry and academia) who think in
terms of qualitative bonding concepts might become readily familiar with the SCF
malecular orbitals and their significance within a familiar frame of reference. It
seems to us that anyone who invokes atomic orbitals and their hybrids in considera-
tions concerning chemical phenomena should at least be aware of SCF molecular
orbitals other than the ¢ and = orbitals of diatomic and other linear molecules since
the molecular orbitals result for molecular structures in exactly the same way that
atomic orbitals follow from atomic structures.

This volume should also be of some value to the theoretician who is well versed in
quantum chemistry. To him we commend the examples of Chapter 2 which demon-
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X PREFACE

strate the effects of varying the basis set on the electron distribution within an
orbital. The pictoral treatment of internal rotation at the end of Chapter 3 may also
be of some interest. Our experience in dealing with a number of theoreticians is
that they too sometimes have trouble in obtaining a spatial concept of electronic
behavior from the usual mathematical format of their art. Spatial conceptualizing
has historically been proved to be of great value in both physics and chemistry.

For those of you whose minds are spatially oriented, this book should be fun to
peruse. We both hope that you will find some of the pleasure we have experienced
in interrelating molecular orbitals among different molecules and among various
configurations of the same molecule by means of cross-sectional electron-density
plots.

Ilyas Absar
John R. Van Wazer
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Orbitals in Quantum-Chemical

Calculations

A. Introduction

In the study of the electronic structure of
matter, it is assumed that chemical systems such
as atoms and molecules and, in turn, fundamental
species such as electrons, neutrons, and protons
can be represented by mathematical functions.
The purpose of quantum-mechanical calculations
as applied to chemistry is to find these functions,
which are called the “eigenfunctions” or “wave
functions” of the atom, molecule, or assemblage
of atoms and/or molecules being investigated.

A theory of physical science must be able to
predict as well as to explain natural phenomena
and the laws that govern them. These predictive
and explanative abilities are embodied in the
mathematics of the Schrédinger equation [1, 27,
which relates the energy of an atomic or molecular
system (or their assemblages) to its wave func-
tion. Accurate wave functions may be used to
calculate the energetics of chemical processes,
with due allowance being made for the statistical
behavior [3] of collections of atoms and/or mole-
cules at temperatures above absolute zero. In
addition, the proper arrangement of atoms neces-
sary to make a stable molecule can be calculated
without recourse in any way to experiment (i.e.,
on an ab initio basis), since the wave function
corresponding to this particular arrangement will
correspond to an energy minimum. Similar cal-
culations cap be used to obtain the energies asso-
ciated with changes in molecular configurations
[2]. Furthermore, a number of physical properties
[2], such as dipole moment and diamagnetic
susceptibility, may be obtained from a good ab
initio wave function. Thus, in one sense, the long-
term purpose of quantum-mechanical calculations
is progressively to make experiments obsolete.

Unfortunately, the Schrédinger equation, which
is a partial differential equation, cannot be solved
exactly for any system containing more than one
electron so that a precise analytic solution for a
neutral atom can be obtained only for hydrogen.
There are certain natural restrictions on these
solutions which are embodied in the quantum
numbers. For the one-electron problem of the
hydrogen atom, there are four such quantum
numbers three of which are a consequence of the
three degrees of freedom in space. These three
quantum numbers, which are derived from the
usual solution in spherical polar coordinates, are
designated n, [, and m, with » taking integer
values starting with 1. For each 7, there are n
values of I starting with 0 and goingup to (n — 1);
and, furthermore, for each [ there are (21 4 1)
values of m starting with —! and increasing in
integral steps up to 0. The fourth quantum
number, s, is introduced to account for electron
spin, and s may have the values 43 or —3.

The values of I = 0, 1, 2, 3, 4, etc., are generally
represented by the lower case letters s, p, d, f, g,
ete. The various states of the hydrogen atom are
designated by nl., e.g., 1sy, 2p_1, 2po, 2p41,
3d_s, 3d_1, 3do, 3d41, 3di2. An alternative,
closely related designation uses the subscripts
z, y, and z for p and xy, 2z, yz, 2%, and 2? — 32 for d
to define a similar set of m quantum numbers with
respect to the spatial geometry of the resulting
functions according to the Cartesian coordinate
axes z, 3, and z These various notations are
simply formalities to describe the electronic states
of hydrogen.

Each of the states of the hydrogen atom corre-
sponds to a certain spatial distribution of elec-
tronic charge. This distribution may be considered

1



2 1. ORBITALS IN QUANTUM-CHEMICAL CALCULATIONS

as the probability of finding the electron at any
given spot or, with equal veracity, as the fraction
at that position of the charge of a spatially dis-
tributed electron. This electron density is evalu-
ated [1, 2] from the square of the wave function
(or more precisely from the wave function multi-
plied by its complex conjugate, ie., Y¢*). The
wave function is calibrated (by a process called
“normalization”) so that the summation of the
electron density over all space equals unity for the
single electron of the hydrogen atom.

The spatial distributions of the electron corre-
sponding to several states of the hydrogen atom
(each one of which may be called an orbital) are
shown in Fig. 1.1. Each of the plots of this figure
corresponds to a cut through the hydrogen atom
passing through its nucleus, with the geometry of
the cut being represented by the basal plane and
the electron density at any point on this plane
being plotted perpendicular to it. If the basal plane
of these diagrams is the zy plane with the z axis
running from the upper left to the lower right of
each diagram, the p-type orbitals are shown as the
2p. and 3p. and the d-type orbital is the 3d,,.
Note in the figure that the s-type orbitals are
truncated in order to display them on the same
scale as those of p and d symmetry. The electron
density of any s orbital is a maximum at the posi-
tion of the nucleus. For the 1s orbital of the hydro-
gen atom, the density at the nucleus is 2.148
e/ A3 ; for the 2s it is 0.2685 ¢/ A% , and for the 3s it
is 0.0796 ¢/ A% .

It is seen in Fig. 1.1 that, whereas the s orbitals
exhibit their highest electron density at the
nucleus, the p and d orbitals have no electron
density at this point, but instead exhibit nodal
planes (i.e., planes of zero electron density)
passing through the nucleus. The differences in
the energies corresponding to these various
states, nln,, of hydrogen are found to agree to good
accuracy with the respective values obtained
from spectroscopic measurements. The major
correction is called ‘“‘spin-orbit coupling,” and it
is necessitated by neglect of the fact that the
moving electron is spinning.

B. Polyelectronic Atoms

In order to obtain meaningful solutions for
polyelectronic atoms, it is necessary to use
approximations in addition to those employed for

Fig. 1.1. A cross-sectional electron-density plot of the
various atomic orbitals corresponding to the ground and
some excited states of the hydrogen atom.




C. MOLECULAR CALCULATIONS 3

the hydrogen atom. One of these approaches,
called the “Hartree-Fock approximation,” in-
volves the assumption of mutually independent
one-electron wave functions that are used to build
up the many-electron wave function, which can
be expressed as a product of these one-electron
orbitals, Moreover, since all electrons are identical,
it is possible to switch any pair of them and the
Pauli principle implies that the resulting many-
electron wave function should be antisymmetric
with respect to interchange of any two electrons.
Therefore, it may be appropriately handled in
the form of a determinant [27] of the one-electron
wave functions, and this is called a “Slater deter-
minant.” Since it appears that a good fit to reality
(i.e., a wealth of experimental data) is obtained
when the one-electron wave functions used in
constructing a polyelectronic atom arg set up in
analogy to hydrogen, this mathematical descrip-
tion allows the various atomic orbitals of a poly-
electronic atom to be closely similar to the various
states of hydrogen, so that these atomic orbitals
may be described by the same set of quantum
numbers.

A second common approximation, which is
mathematically consistent with the previous one
and which is employed in conjunction with it, is
called the “self-consistent field” (SCF) approach
[1, 27]. This approximation consists of a mathe-
matical treatment in which the spatially dis-
tributed electron is considered to lie in the average
potential field of all the other electrons and a
series of iterations is employed to make the fields
mutually consistent within the framework of the
Schrodinger equation. In the above approxima-
tions, the best mathematical deseription of each
atomic orbital leads to what is called the “limiting
Hartree—Fock solution.”

The energy of an atomic state obtained from a
Hartree-Fock solution is never as low as the
experimental energy, primarily because of the
neglect of electronic correlation. Furthermore,
there are relativistic effects. Although these cor-
rections together seldom amount to more than ca.
19, of the total energy, E, of forming the atom
from the isolated electrons and the isolated
nucleus, the magnitude of the difference, AE,
between the experimental and the Hartree-Fock
energies is gxtremely large in chemical terms,
especially for the heavier atoms. For the ground-
state lithium atom, it has been estimated [4] that
AE = 28.8 keal/mole, of which only 1.29, is due
to relativistic effects, with AE/E = 0.619,; like-
wise, for the fluorine atom, AE = 250 kcal/mole,
of which 20.89, is relativistic, with AE/E =

0.409,. For the sodium atom, AE = 368 kecal/
mole, of which 34.19, is relativistic, with AE/E =
0.369; for the chlorine atom, AE = 1279 kecal/

‘mole, of which 67.39 is relativistic, with AE/E =

0.449,.

The correction for electron correlation accounts
for details of electronic motion that are not
covered by the SCF approximation (in which
each electron is considered to move in the average
field of the all of other electrons). In particular,
this assumption of an average potential field allows
electrons with antiparallel (i.e., opposite) spins
to avoid each other less assiduously than is the
case in reality. Various approximations [2] have
been employed for estimating the contribution of
electron correlation to the total energy. Such esti-
mates generally deal only with interactions be-
tween pairs of electrons. A rough rule of thumb
for atoms and ions with six or more electrons is
that the correlation energy is around —50
kcal /mole per doubly filled orbital.

The relativistic correction [2] is also attribut-
able to electron dynamics and is primarily assign-
able to the innermost orbitals of the larger atoms
(exhibiting the larger nuclear charges). The
mechanical analogy to the situation of a negative
charge lying close to a large positive point charge
is for the negative charge to move at an excessively
high speed so that the centrifugal force will
counterbalance the Coulombie attraction between
the opposite charges. For electrons, this speed
of revolution about the nucleus is rapid enough
to lead to relativistic effects.

C. Molecular Calculations

The SCF technique can be applied to molecules
in just the same way as it is applied to atoms, if
we consider the molecule in the fixed-nucleus
approximation [27] (which corresponds to a
zero-order Born—Oppenheimer wave function).
This approximation assumes that electronic
motion is sufficiently faster than nuclear motion
so that the nuclei may be regarded as fixed parti-
cles. Thus, the effects of small relative motions of
the nuclei may be omitted from the wave function.
Both theoretical and experimental evidence has
amply justified the use of this approach. The
functions resulting from the solution of the molec-
ular Schrodinger wave equation are a natural
extension of the atomic-orbital approach. Again,
the one-electron wave functions are called “orbi-
tals,” but in this case they are molecular rather
than atomic orbitals. It is important to note that
except for the chemically insignificant effects
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introduced by the fixed-nucleus approximation,
Hartree—Fock SCF molecular orbitals have exactly
the same degree of significance and meaningful-
ness as do the Hartree-Fock SCF atomic orbitals.

For historical reasons, chemists have been at
ease in thinking of atoms in terms of orbitals, even
for large atoms for which wave functions could
not be obtained until the last few years, when
large-scale computers became generally available.
In part, this touching confidence is due to the fact
that the one-electron wave functions (i.e., atomie
orbitals) used to describe a polyelectronic atom
are similar in form to the various states (ground
and excited) of the hydrogen atom for which each
state is in itself a one-electibn wave function. This
similarity to hydrogen allowed chemists to discuss
semiquantitatively the electronic structure of the
heavier atoms long before it was practicable to cal-
culate the respective wave functions.

Because there is more than one nuclear center
in a molecule, the straightforward analogy to the
hydrogen atom is lost and such matters as the
spatial distribution of electrons in molecular
orbitals have not been adequately considered
until quite recently. As a result of this and because
the notions of chemical bonds as electronic charge
concentration entered chemistry in pre-quantum-
chemical days, the molecular orbitals have seemed
forbidding and cumbersome to most chemists,
because it is not uncommon for the electronic
charge in a single molecular orbital to be distri-
buted around several of the nuclear centers of the
molecule. Furthermore, for closed-shell systems
(the usual case for stable molecules), the sym-
metry inherent in the arrangement of the nuclear
centers carries over into the molecular orbitals
which are usually deseribed in terms of point-
group notation.

Linear molecules (naturally, including all di-
atomics) have cylindrical symmetry and there-
fore may be specified by a notation which is a
straightforward extension of the one used for
atoms, which all have spherical symmetry. Thus,
in parallel to the s, p, d, f, g, ete., atomic orbitals,
the molecular orbitals of these linear structures
are designated as o, m, 8, ¢, v, etc. Just as the s
atomic orbital has spherical symmetry, so the o
molecular orbital exhibits cylindrical symmetry.
Likgwise, just as each of the p, d, f, g, etc., atomic
orbitals can be considered as resulting from the
introduction of one, two, three, four, ete., nodal
planes of symmetry to an s atomic orbital, simi-
larly, the =, 8, ¢, v, ete., molecular orbitals in
linear molecules exhibit one, two, three, four, etec.,

planes of symmetry, each containing the cylindri-
cal axis of the molecule.

As a pedagogic exercise to demonstrate how
molecular orbitals are formed from a combination
of atomic orbitals, three-dimensional electron-
density plots for any plane running through the
linear axis of typical o, 7, and é orbitals are shown
in Fig. 1.2. These plots represent the electronic
structures obtained by bringing two hydrogen
atoms together at a distance essentially that at
which maximum overlap is achieved between the
participating atomic orbitals. For example, the
pseudomolecular orbital marked (o), is con-
structed as follows: Y, = (1/V2) (Y15 + ¥i);
similarly Y10, = (1/V2) ($is — ¥is) and Y =
(1/V2) (\bg) —+ ﬁg), where g stands for gerade
(i.e., straightforward) and u for wungerade. Al-
though these constructed pseudomolecular orbi-
tals were not optimized by any SCF procedure or
its equivalent, it is interesting to note that they
are closely related to the symmetry states of the
hydrogen molecular ion, Hyt. For this Hy* ion [5],
only three stable states, (o1s)g, (m2p)u, and
(034) g, were found; and these exhibit bond dis-
tances of 1.06, 4.8, and 4.2 A, respectively. In the
diagrams of Iig. 1.2 the related distance for the
pseudomolecular orbitals involving the 1s atomic
orbitals was also 1.06 A, whereas a distance of
5.3 A was employed for the pseudomolecular
orbitals based on 2s or 2p atomic functions. For
the pseudomolecular orbitals of Fig. 1.2 involving
3s, 3p, or 3d atomic orbitals, the interatomic dis-
tance chosen to correspond to maximum overlap
was 10.6 A.

If we consider that the plots of Fig. 1.2 approxi-
mate the probability of finding the single electron
of the pseudomolecular orbital at a given position
with respect to the two protons, we see that the
(61s)g orbital corresponds to the electron lying
close to the vicinity of the two nuclei and also
between them. The deleted top portion of the
diagram of orbital (1), in Fig. 1.2 shows indi-
vidual peaks above each hydrogen nucleus with
a valley between them, not unlike the uppermost
part of the central portion of orbital (ozp)e.
Orbitals (o2)g and (o35) exhibit the same general
form of orbital (o), except for the introduction
of a spherical nodal surface around each hydrogen
for (o1s) ¢ and two such nodal surfaces around each
hydrogen for (os), . These, of course, correspond
to the inner nodes of the participating atomic
orbitals. Note that the bonding is achieved by
overlap of the outer antinodes, whereas the inner
antinodes act simply as reservoirs for some of the
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Fig. 1.2. Electron-density diagrams of pseudomolecular
orbitals generated from a linear combination of hydrogen
atomic orbitals. The base plane of these diagrams passes
through the two hydrogen nuclei, which have been placed
so as to have maximum overlap of the atomic wave
functions. (Fig. 1.2 continued p. 6.)
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electron density. Orbitals (o1)u, (025)u, and
(03s)u have the same spherical nodal surfaces as
orbitals (o1s)g, (025)¢, and (o3s)g ; but, in addi-
tion, each of them exhibits a nodal plane which
bisects the internuclear axis. The intersection of
these planes with the basal plane of the diagram
is shown by the heavy line on the latter.
Pseudomolecular orbital (o2;), consists of the
end-on interaction of a 2p lobe on one hydrogen
with that on the other. Naturally, this orbital
exhibits the two nodal planes corresponding to
those of the participating 2p functions. However,
orbital (osp)u has an additional nodal plane lying
exactly between these two. Note that the outer
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lobes of the participating 2p functions of orbital
(02p)e and (ozp)u act as reservoirs of electron
density, with the density being transferred into
the bonding region for the bonding orbital (o)
and out of this region for the antibonding orbital
(02p)u. The (mop)u pseudomolecular orbital in-
volves the sidewise interaction of the 2p lobes on
each of the hydrogen atoms so that it exhibits
only one nodal plane, which passes through the
internuclear axis. Likewise, orbital () exhibits
not only this plane but a plane at right angles to
it, which bisects the internuclear axis. These
arguments may be extended to the other orbitals
shown in Fig. 1.2.
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D. Basis Sets

SCF calculations may be carried out in various
ways. A common procedure is to use an exponen-
tial function or a linear combination of such func-
tions to describe each orbital, with the exponents
being optimized by SCF procedures to find the
set of exponents giving minimum energy. The
exponential function of the form r"le—tr, where r
is the radial distance from the nucleus and ¢
(zeta) 1s a variational parameter called the
“orbital exponent,” makes up the radial contribu-
tion to what is called a “Slater-type function.”
The exponential function of the form rm—le—ar?
where « is another variational parameter (orbital
exponent), is the radial contribution to what is
called a “Gaussian-type function,” with each
atomic orbital being represented by a linear com-
bination of several such functions. The various
functions used to describe an atomic orbital are
called “basis functions,” and the number of these
functions designates the size of the basis set.
Although the Slater-type orbitals exhibit the
same exponential form as do the analytical solu-
tions for the various states of the single-electron
hydrogen atom, it turns out that the evaluation
of the various multicenter integrals involved in a
molecular SCF calculation may be carried out
more easily using Gaussian rather than Slater
functions. At the present time, therefore, a
Gaussian representation is usually preferred for
ab Znitio molecular calculations.

When only one Slater-type function is used to
describe each atomic orbital, the representation
is called a “minimum-Slater basis set.” However,
even at convergence with atom optimization of
the value of each orbital exponent, this basis set
gives only a moderately good description of the
atom. This description is considerably improved
when two or more Slater-type functions are used
to represent each atomic orbital. Thus, we have a
minimum-Slater set as well as various extended-
Slater basis sets, such as a double-zeta, triple-zeta,
etc., set corresponding to the use of two, three,
etc., Slater functions to describe each atomic
orbital. If, say, a different number of Slater
functions is employed to describe the various
orbitals (e.g., a double zeta for a 1s and a triple
zeta for a 2s), the overall description is simply
included in the generic class of extended-Slater
basis sets. Since the exponential form of Gaussian
functions is different from that of analytical
solutions for the hydrogen atom, two to four
Gaussian orbitals are required as replacements

for each Slater orbital to get about the same total
energy of the atom or molecule. Quite large

. Gaussian basis sets are generally employed in

modern calculations, with optimization of all of
the exponents in the respective atoms, as well as
the usual optimization of the coefficients that
weight the contributions of each Gaussian func-
tion in the linear combination employed. It is the
exponent that determines the “orbital radius” for
each atomic orbital, with a larger exponent corre-
sponding to a smaller radius. If several exponents
are employed to describe a given atomic orbital,
the orbital radius then results from a weighting
by the respective coefficients of the contributing
exponential functions.

In dealing with Gaussian basis sets, it is com-
mon practice to employ the full set.of exponents
of a given symmetry (i.e., I quantum number) for
each atomic orbital of that symmetry (i.e., the
same set of exponents are used for the 1s, 2s, and
3s orbitals of a given third-period atom). Under
these conditions, the members of an atom-opti-
mized set of Gaussian exponents used for each sym-
metry are spaced approximately evenly on a log
scale, with some bunching up of the larger expo-
nents because they predominate in the description
of the higher-energy inner orbitals and because the
optimization is carried out through minimization
of the total atomic energy. Furthermore, it is
found [6] that the values of the atom-optimized
exponents obtained for a selected number of
Gaussian functions of a given symmetry are
practically unaffected by the number of Gaussian
functions employed to describe the orbitals of
different symmetry. Thus, for carbon, essentially
the same individual values were obtained for a
set of, say, nine s-type functions when optimized
with anywhere from one to six p-type functions.

Of course, calculations on molecules may be
carried out just as they are on atoms, with full
optimization of all coefficients and exponents of
appropriately chosen exponential functions. How-
ever, it is found to be computationally expeditious
to use a linear combination of atomic orbitals
(LCAO) in the SCF calculation [1, 2]. Just as
an atomic orbital can be described in a Gaussian
or a multiple-zeta Slater basis set in terms of a
linear combination of orbital functions, a molecu-
lar orbital may be treated as a linear combination
of atomic orbitals. These, in turn, are often linear
combinations themselves. Since the chemical
bonding in molecules really represents only a
small perturbation of the constituent atoms, it is
quite common to optimize the exponents of the
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filled atomic orbitals in the ground-state atom
and to use these ‘‘atom-optimized” exponents in
the molecular calculation. This may lead to some
error in the description of an atom within a mole-
cule when a minimum-Slater basis set is employed.
However, when several atom-optimized expo-
nents are used for each atomic orbital without
contraction (see below), the molecular optimiza-
tion of the coefficients of the individual functions
used to describe a given atomic orbital can make
allowance for an effective change in radius of this
orbital when going from the atom to the molecule
in question. This method of indirectly achieving
molecular optimization of atomic-orbital radii is
particularly effective when the entire range of
Gaussian exponents for a given orbital symmetry
contributes to each individual atomic orbital of
that symmetry.

Two common ways of lowering the cost of an
LCAO-MO-SCF calculation are the use of orbital
contraction and symmetry adaption. In orbital
contraction, the original linear combination of
basis functions used to describe each atom in a
molecule is reduced by bunching several basis
functions together through the use of linear com-
binations, with the integrals being evaluated for
the overall basis set and the SCF optimization
being carried out on the contracted set. This pro-
cedure has the disadvantage of reducing the cap-
ability of adjusting atomic-orbital radii to fit the
requirements of various molecules, as described
for uncontracted orbitals above. Symmetry adap-
tion merely means that the individual functions
of a complete basis set (or the combinations of
these functions) which are unneeded for a par-
ticular molecular symmetry are deleted so that
computer time is not wasted in calculating large
numbers of zero-valued integrals and the full
Hartree-Fock matrix may be replaced by smaller
matrices, one for each pertinent symmetry type,
to reduce the cost of matrix diagonalization.

When the SCF procedure is used for energy
optimization, the total energy corresponding to
the mathematical description afforded by a given
basis may be obtained to a high degree of accuracy.
Thus, for a given choice of say, Slater or Gaussian
exponents, the final SCF energy after a sufficient
number of iterations will always be the same, and
thisgbasis-set-dependent value is called the “con-
vergénce limit.” However, if increasingly larger
basis sets are used, it is found that the convergence
limit approaches a limiting value of the total
energy and this limiting energy, corresponding
to an infinitely large basis set, is called the “‘energy

at the Hartree-Fock or SCF limit” [2]. This
Hartree—IFock energy is always the same for any
given atom or molecule and is independent of the
choice of the basis set, as well as of the type of
function used to describe the orbitals making up
the basis set. In the study of molecules, various
odd combinations [2] of orbitals have been tried
in order to minimize calculational expenses. From
these studies it is clear that the LCAO approxima-
tion may be extended in peculiar ways. Thus, the
Hartree-Fock limit might possibly be obtained
by using only s-type orbitals, which are scattered
around in space and not necessarily centered on
any nuclei. In the extreme, it may well be that
one can use an infinitely large basis set consisting
of practically any or many kinds of orbital func-
tions expressed in any convenient mathematical
form scattered around or located at an arbitrary
or optimized point in space. Although the applica-
tion of this approach to atoms has not received
much attention, there is no basic reason that it
cannot be generally emvloyed. If these ideas seem
hard to visualize, note that a properly chosen s
orbital (described by, say, several Gaussian func-
tions), when centered at the appropriate distance
from the selected nucleus along the positive z axis
with another of opposite sign similarly located
along the negative z direction, gives a good
description of a p, orbital. (This particular type
of representation is sometimes called a “Gaussian
lobe function” [27.)

A commonly used formality in chemistry is the
discussion of molecules and molecular orbitals in
terms of the atomic orbitals making up the LCAO
basis set. If the atomic orbitals are properly
chosen (as in a minimum-Slater basis set) and
are each centered on their respective atoms, the
formality of discussing the molecule in terms of
atomic orbitals can be useful and edifying. How-
ever, in such discussions it is important that the
basis set be “balanced” [7] so that the choice of
the atomic orbitals does not lead to bookkeeping
errors in the atomic charges, as analyzed either
per atom or per atomic orbital. Except for the case
of the minimum-Slater basis set, it is difficult to
judge when a combination of atomic orbitals is
well balanced and the literature is full of examples
of extremely poorly balanced basis sets. When too
many atomic orbitals are assigned to one atom as
compared to one or more of the others in a limited
basis set, these atomic orbitals may effectively
represent the starved atom(s), although being
formally assigned to the other atom. An extreme
case of this situation is found for the one-center



