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Editorial Policy

§ 1. Lecture Notes aim to report new developments - quickly, informally, and at
a high level. The texts should be reasonably self-contained and rounded off. Thus
they may, and often will, present not only results of the author but also related
work by other people. Furthermore, the manuscripts should provide sufficient
motivation, examples and applications. This clearly distinguishes Lecture Notes
manuscripts from journal articles which normally are very concise. Articles
intended for a journal but too long to be accepted by most journals, usually do not
have this “lecture notes” character. For similar reasons it is unusual for Ph. D.
theses to be accepted for the Lecture Notes series.

§ 2. Manuscripts or plans for Lecture Notes volumes should be submitted
(preferably in duplicate) either to one of the series editors or to Springer- Verlag,
Heidelberg . These proposals are then refereed. A final decision concerning
publication can only be made on the basis of the complete manuscript, but a
preliminary decision can often be based on partial information: a fairly detailed
outline describing the planned contents of each chapter, and an indication of the
estimated length, a bibliography, and one or two sample chapters - or a first draft
of the manuscript. The editors will try to make the preliminary decision as definite
as they can on the basis of the available information.

§ 3. Final manuscripts should preferably be in English. They should contain at

least 100 pages of scientific text and should include

- a table of contents;

- an informative introduction, perhaps with some historical remarks: it should be
accessible to a reader not particularly familiar with the topic treated;

- a subject index: as a rule this is genuinely helpful for the reader.

Further remarks and relevant addresses at the back of this book.
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Preface

From April 12 to April 16, 1992, the instructional conference for Ph.D-students “Dio-
phantine approximation and abelian varieties” was held in Soesterberg, The Nether-
lands. The intention of the conference was to give Ph.D-students in number theory
and algebraic geometry (but anyone else interested was welcome) some acquaintance
with each other’s fields. In this conference a proof was presented of Theorem I of
G. Faltings’s paper “Diophantine approximation on abelian varieties”, Ann. Math. 133
(1991), 549-576, together with some background from diophantine approximation and
algebraic geometry. These lecture notes consist of modified versions of the lectures
given at the conference.

We would like to thank F. Oort and R. Tijdeman for organizing the conference,
the speakers for enabling us to publish these notes, C. Faber and W. van der Kallen
for help with the typesetting and last but not least the participants for making the
conference a successful event.
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Introduction

Although diophantine approximation and algebraic geometry have different roots,
today there is a close interaction between these fields. Originally, diophantine ap-
proximation was the branch in number theory in which one deals with problems such
as approximation of irrational numbers by rational numbers, transcendence problems
such as the transcendence of e or 7, etc. There are some very powerful theorems in
diophantine approximation with many applications, among others to certain classes
of diophantine equations. It turned out that several results from diophantine approxi-
mation could be improved or generalized by techniques from algebraic geometry. The
results from diophantine approximation which we discuss in detail in these lecture
notes are Roth’s theorem, which states that for every algebraic number « and for
every 6§ > 0 there are only finitely many p,q € Z with |a — p/q| < |¢|~?7%, and a
powerful higher dimensional generalization of this, the so-called Subspace theorem
of W.M. Schmidt. Here, we would like to mention the following consequence of the
Subspace theorem, conjectured by S. Lang and proved by M. Laurent: let I' be the
algebraic group (@), endowed with coordinatewise multiplication, V' a subvariety of
I, not containing a translate of a positive dimensional algebraic subgroup of I', and
G a finitely generated subgroup of I'; then V NT is finite.

We give a brief overview of the proof of Roth’s theorem. Suppose that the equation
|o — p/q| < ¢~%7% has infinitely many solutions p,q € Z with ¢ > 0. First one shows
that for sufficiently large m there is a polynomial P(Xj,...,X,,) in Z[X,,...,X,,]
with “small” coefficients and vanishing with high order at (a,...,a). Then one shows
that P cannot vanish with high order at a given rational point z = (p1/q1,--.,Pn/qn)
satisfying certain conditions. This non-vanishing result, called Roth’s Lemma, is the
most difficult part of the proof. From the fact that |« — p/g| < ¢~27% has infinitely
many solutions it follows that one can choose z such that |a —p,/g,| < ¢;%7° for n in
{1,...,m}. Then for some small order partial derivative P; of P we have P;(z) # 0.
But P;(z) is a rational number with denominator dividing a := ¢{* ---g%m, where
d;j = degy (F:). Hence |P(z)| 2 1/a. On the other hand, P; is divisible by a high
power of X; —a and |pj/q; — «| is small for all j in {1,...,m}. Hence P;(z) must be
small. One shows that in fact |P;(z)| < 1/a and thus one arrives at a contradiction.

Algebraic geometry enables one to study the geometry of the set of solutions (e.g.,
over an algebraically closed field) of a set of algebraic equations. The geometry often
predicts the structure of the set of arithmetic solutions (e.g., over a number field)
of these algebraic equations. As an example one can mention Mordell’s conjecture,
which was proved by G. Faltings in 1983 [21]. Several results of this type have been
proved by combining techniques from algebraic geometry with techniques similar to
those used in the proof of Roth’s theorem. Typical examples are the Siegel-Mahler
finiteness theorem for integral points on algebraic curves and P. Vojta’s recent proof
of Mordell’s conjecture.

In these lecture notes, we study the proof of the following theorem of G. Faltings
([22], Thm. I), which is the analogue for abelian varieties of the result for (Q")"



xi
mentioned above, and which was conjectured by S. Lang and by A. Weil:

Let A be an abelian variety over a number field k and let X be a subvariety
of A which, over some algebraic closure of k, does not contain any positive
dimensional abelian variety. Then the set of rational points of X is finite.

(Note that this theorem is a generalization of Mordell’s conjecture.) The proof of
Faltings is a higher dimensional generalization of Vojta’s proof of Mordell’s conjecture
and has some similarities with the proof of Roth’s theorem. Basically it goes as follows.
Assume that X (k) is infinite. First of all one fixes a very ample symmetric line bundle
L on A, and norms on L at the archimedian places of k. Let m be a sufficiently large
integer. There exists z = (z,...,Z,) in X™(k) satisfying certain conditions (e.g., the
angles between the z; with respect to the Néron-Tate height associated to £ should be
small, the quotient of the height of z;,; by the height of z; should be bigfor1 <: < m
and the height of z; should be big). Instead of a polynomial one then constructs a
global section f of a certain line bundle £(o—¢, s1,...,5m)? on a certain model of X™
over the ring of integers R of k. This line bundle is a tensor product of pullbacks of £
along maps A™ — A depending on o—¢, the s; and on d; in particular, it comes with
norms at the archimedian places. By construction, f has small order of vanishing at z
and has suitably bounded norms at the archimedian places of k. Then one considers
the Arakelov degree of the metrized line bundle z*£(0—¢, s1,...,5n)¢ on Spec(R);
the conditions satisfied by the z; give an upper bound, whereas the bound on the
norm of f at the archimedian places gives a lower bound. It turns out that one can
choose the parameters €, o, the s; and d in such a way that the upper bound is smaller
than the lower bound.

We mention that the construction of f is quite involved. Intersection theory is
used to show that under suitable hypotheses, the line bundles £(—¢, sy, ...,8,)* are
ample on X™. A new, basic tool here is the so-called Product theorem, a strong
generalization by Faltings of Roth’s Lemma.

On the other hand, Faltings’s proof of Thm. I above is quite elementary when
compared to his original proof of Mordell’s conjecture. For example, no moduli spaces
and no l-adic representations are needed. Also, the proof of Thm. I does not use
Arakelov intersection theory. Faltings’s proof of Thm. I in [22] seems to use some of
it, but that is easily avoided. The Arakelov intersection theory in [22] plays an essential
role in the proof of Thm. II of [22], where one needs the notion of height not only for
points but for subvarieties; we do not give details of that proof. The only intersection
theory that we need concerns intersection numbers obtained by intersecting closed
subvarieties of projective varieties with Cartier divisors, so one does not need the
construction of Chow rings. The deepest result in intersection theory needed in these
notes is Kleiman’s theorem stating that the ample cone is the interior of the pseudo-
ample cone. Unfortunately, we will have to use the existence and quasi-projectivity
of the Néron model over Spec(R) of A in the proof of Lemma 3.1 of Chapter XI; a
proof of that lemma avoiding the use of Néron models would significantly simplify
the proof of Thm. I. We believe that for someone with a basic knowledge of algebraic
geometry, say Chapters II and III of [27], everything in these notes except for the
use of Néron models is not hard to understand. In the case where X is a curve, i.e.,
Mordell’s conjecture, the proof of Thm. I can be considerably simplified; this was
done by E. Bombieri in [9].
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Let us now describe the contents of the various chapters. Chapter I gives an
overview of several results and conjectures in diophantine approximation and arith-
metic geometry. After that, the lecture notes can be divided in three parts.

The first of these parts consists of Chapters II-IV; some of the most important re-
sults from diophantine approximation are discussed and proofs are sketched of Roth’s
theorem and of the Subspace theorem.

The second part, which consists of Chapters V-XI, deals with the proof of Thm. I
above. Chapters V and VII provide the results needed of the theory of height functions
and of intersection theory, respectively. Chapter VIII contains a proof of the Product
theorem. This theorem is then used in Chapter IX in order to prove the ampleness
of certain £(—¢,s,...,5m)% Chapter X gives a proof of Faltings’s version of Siegel’s
Lemma. Chapter XI finally completes the proof of Thm. I. Chapter VI gives some
historical background on how D. Mumford’s result on the “widely spacedness” of
rational points of a curve of genus at least two over a number field lead to Vojta’s
proof of Mordell’s conjecture.

The third part consists of Chapters XII and XIII. Chapter XII gives an application
of Thm. I to the study of points of degree d on curves over number fields. Chapter XIII
discusses a generalization by Faltings of Thm. I, which was also conjectured by Lang.



Terminology and Prerequisites

In these notes it will be assumed that the reader is familiar with the basic objects of
elementary algebraic number theory, such as the ring of integers of a number field, its
localizations and completions at its maximal ideals, and the various embeddings in
the field of complex numbers. The same goes more or less for algebraic geometry. To
understand the proof of Faltings’s Thm. I the reader should be familiar with schemes,
morphisms between schemes and cohomology of quasi-coherent sheaves of modules
on schemes. In order to encourage the reader, we want to mention that Hartshorne’s
book [27], especially Chapters II, §§1-8 and III, §§1-5 and §§8-10, contains almost
all we need. The two most important exceptions are Kleiman’s theorem on the ample
and the pseudo-ample cones (see Chapter VII), for which one is referred to [28], and
the existence and quasi-projectivity of Néron models of abelian varieties (used in
Chapter XI), for which [11] is an excellent reference. At a few places the “GAGA
principle” (see [27], Appendix B) and some algebraic topology of complex analytic
varieties are used. A less important exception is the theorem of Mordell-Weil, a proof
of which can for example be found in Manin’s [52], Appendix II, or in [70]; Chapter V
of these notes contains the required results on heights on abelian varieties. Almost
no knowledge concerning abelian varieties will be assumed. By definition an abelian
variety over a field k£ will be a commutative projective connected algebraic group over
k. We will use that the associated complex analytic variety of an abelian variety over
C is a complex torus.

Since these notes are written by various authors, the terminologies used in the
various chapters are not completely the same. For example, Chapter I uses a normal-
ization of the absolute values on a number field which is different from the normaliza-
tion used by the other contributors; the reason for this normalization in Chapter I is
clear, since one no longer has to divide by the degree of the number field in question
to define the absolute height, but it has the disadvantage that the absolute value no
longer just depends on the completion of the number field with respect to the absolute
value. Another example is the notion of variety. If & is a field, then by a (algebraic)
variety (defined) over k one can mean an integral, separated k-scheme of finite type;
but one can also mean the following: an (absolutely irreducible) affine variety (de-
fined) over k is an irreducible Zariski closed subset in some affine space K™ (K a fixed
algebraically closed field containing k) defined by polynomials with coefficients in k,
and a (absolutely irreducible) variety (defined) over k is an object obtained by glueing
affine varieties over k with respect to glueing data given again by polynomials with
coefficients in k. As these two notions are (supposed to be) equivalent, no (serious)
confusion should arise.
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Chapter I

Diophantine Equations and
Approximation

by Frits Beukers

1 Heights

Let F be an algebraic number field. The set of valuations on F' is denoted by Mg. Let
||lv, or v in shorthand, be a valuation of F. Denote by F, the completion of F' with
respect to v. If F, is R or C we assume that v coincides with the usual absolute value
on these fields. When v is a finite valuation we assume it normalised by |p|, = 1/p
where p is the unique rational prime such that |p|, < 1. The normalised valuation
|- is defined by
lzll = fefiF 07

with the convention that p = oo when v is archimedean and Q. = R. For any
non-zero z € F we have the product formula

(1.1) [Tl = 1.

Let L be any finite extension of F. Then any valuation w of L restricted to F' is a
valuation v of F. We have for any z € F and v € MF,

(1.2) llzll, = T llzl
wlv

where the product is over all valuations w € M whose restriction to F' is v. The
absolute multiplicative height of z is defined by

H(z) = Hma.x(l, [lz[]s)-

It is a consequence of (1.2) that H(z) is independent of the field F which contains z.
The absolute logarithmic height is defined by

h(z) = log H(z).

Let P" be the n-dimensional projective space and let P € P"(F') be an F-rational point
with homogeneous coordinates (o, z1,...,2,). We define the projective (absolute)
height by
h(P) = ¥ logmax(l[zolls 21 lus- - l12all)-
v
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Again, h(P) is independent of the field F' containing P. Therefore the projective
height can be considered as a function on P*(F). Notice that the height A(z) of a
number coincides with the projective height of the point (1 : z) € P'. The projective
height has the fundamental property that, given ho, there are only finitely many
P € P*(F) such that h(P) < ho.

Let V be a non-singular projective variety defined over F. Let ¢ : V — |
be a projective embedding also defined over F. On V(F), the F-rational points of
V, we take the restriction of the projective height as a height function and denote
it by hy. In general the construction of heights on V runs as follows. First, let D
be a very ample divisor. That is, letting fo, fi,...,f. be a basis of the space of all
rational functions f defined over F' with (f) > —D, the map ¢ : V — P" given
by P (fo(P), fi(P),..., fa(P)) is a projective embedding.. The height hp is then
simply defined as hy. If Dy, D, are two linearly equivalent very ample divisors, then
hp, — hp, is known to be a bounded function on V(F).

Now let D be any divisor. On a non-singular projective variety one can always
find two very ample divisors X,Y such that D +Y = X. Define hp = hx — hy.
Again, up to a bounded fuction, hp is independent of the choice of X and Y.

We summarize this height construction as follows.

1.3 Theorem. There exists a unique homomorphism

linear divisor classes — real valued functions on V(F)

modulo bounded functions

denoted by ¢ — h. + O(1) such that: if ¢ contains a very ample divisor, then h, is
equivalent to the height associated with a projective embedding obtained from the
linear system of that divisor.

We also recall the following theorem.

1.4 Theorem. Let ¢ be a linear divisor class which contains a positive divisor Z.
Then
he(P) 2 O(1)

for all P € V(F), P ¢ supp(Z).

For the proof of the two above theorems we refer to Lang’s book [36], Chapter 4.

Finally, following Lang, we introduce the notion of pseudo ample divisor, not to
be confused with the pseudo ample cone. A divisor D on a variety V is said to be
pseudo ample if some multiple of D generates an embedding from some non-empty
Zariski open part of V into a locally closed part of projective space. One easily sees
that there exists a proper closed subvariety W of V such that, given ho, the inequality
hp(P) < ho has only finitely many solutions in V(F) — W.

2 The Subspace Theorem

For the sake of later comparisons we shall first state the so-called Liouville inequality.
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2.1 Theorem (Liouville). Let F be an algebraic number field and L a finite exten-
sion. Let S be a finite set of valuations and extend each v € S to L. Then, for every

a € L, a # 0 we have
1

>
.,129 el = H(oz)[L:F]

Proof. Let us assume that ||a||, < 1 for every v € S. If not, we simply reduce the
set S. Let Sp be the finite set of valuations on L which are chosen as extension of v
on F. Using the product formula we find that

I1 llellw = II llelig!

wESL wgSp
> ][ max(1,|le|l)™
wgSL
1
> H max(1,||a||,)”" = s
weMy H(a)

The proof is finished by noticing that
lledly = lla [V F > o (]
O
Liouville applied more primitive forms of this inequality to obtain lower bounds for the
approximation of fixed algebraic numbers by rationals. In our more general setting,

let a be a fixed algebraic number of degree d over F. Then it is a direct consequence
of the previous theorem that

2.2 z —

(22) T ~ell) > 3¢5

for every x € F with £ # 0. Here c(a) is a constant which can be taken to be
(2H(a))™¢. Using such an inequality Liouville was the first to prove the existence
of transcendental numbers by constructing numbers which could be approximated by
rationals much faster than algebraic numbers. In 1909 A. Thue provided the first non-
trivial improvement over (2.2) which was subsequently improved by C.L. Siegel (1921),
F. Dyson (1948) and which finally culminated in Roth’s theorem, proved around 1955.
The theorem we state here is a version by S. Lang which includes non-archimedean
valuations, first observed by Ridout, and a product over different valuations.

2.3 Theorem (Roth). Let F be an algebraic number field and S a finite set of
valuations of F. Let € > 0. Let a € Q and extend each v to F(a). Then

1
[Ile =ell.) < (2

v€S
has only finitely many solutions = € F.

A proof of Roth’s original theorem can be found in Chapter III of these notes. Around
1970 W.M. Schmidt extended Roth’s techniques in a profound way to obtain a simul-
taneous approximation result. Again the version we state here is a later version which
follows from work of I1.P. Schlickewei.



4 Chapter I : Introduction

ENT = {(z,6) € Tsri(2,6) =0, i < d},
{ri,r;} = 0, where {f, g} is the Poisson bracket of f and g,

the differentials dr;, ¢ < d, and the canonical one-form Y {;dz; are linearly

independent at all points from ¥ which liein T

An important notion in this context is that of the bicharacteristic leaves of ¥. By
definition these are the d—dimensional submanifolds in ¥ which have as tangent vectors
the Hamiltonian vectorfields associated with the r;. As is standard, it follows from the
assumptions on ¥ that we can find homogeneous real-analytic canonical coordinates such

that in a conic neighborhood of (z°,£°),
L ={(z,¢);& =0 for ¢ < d}. (1.1.2)

In these coordinates, the bicharacteristic leaves are of course just of form z; = constant,
& = constant, i = d+1,...,n. We shall also often set in this situation ¢’ = (&, ..., £4), so

that ¥ becomes £’ = 0 in some suitable local coordinate patch. Correspondingly, we set
:I:’ = (.’L‘1, een ,zd),z" = (.’Ed+1, o ,:t,,),é” = (§d+17 e ,En).
(Related notations shall also be considered later on.)

An interesting case for results on propagation of singularities is here when p,, is transver-
sally elliptic to X. By this we mean that if we fix (y,n) € £, then we can find a conic
neighborhood T of (y,7n) and some c;, ¢z so that

dz(z, )IEI™ ™" < alpm(@,€)| < cady(z, §)|EI™ " if (2,€) €T, (1.1.3)

where dy is some homogeneous distance function to . Actually, ¥ is then precisely the
characteristic variety of p, so p, vanishes of constant multiplicity on its characteristic

variety. We have then the following classical result of Bony-Schapira [1]:

Theorem 1.1.1. Let u be a solution of p(z,D)u = 0 and denote by W Fau the analytic
wave front set of u. Then WFsu is a union of bicharacteristic leaves of . (More
explicitly, if L is a connected bicharacteristic leaf of ¥ and if (2°,£°) € WF4u, then
L C WFu.)

The case when p,, is real-valued and s = 1 in (1.1.1), i.e. when p is of so-called real
principal type, theorem 1.1.1 had of course been considered already by Hérmander [2]
and Kashiwara (cf. Sato-Kawai-Kashiwara [1]) and has been the prototype of all results
on propagation of microlocal singularities ever since. Note that in this case the bichar-

acteristic leaves are just the null bicharacteristic curves of p,,. (For related results for



