Relational
Databases and
Knowledge Bases

Georges Gardarin
Patrick Valduriez

Relational
Databases and
Knowledge Bases

Georges Gardarin

INSTITUT NATIONAL DE RE

AUTOMATIQUE (INRIA)
Patrick Valddriez ﬁ
OL

ThE T
B

UNIVERSITY OF PARIS, VI (
MICROELECTRONIC AND C PUTER T

A

VYV ADDISON-WESLEY PUBLISHING COMPANY
Reading, Massachusetts ® Menlo Park, California ® New York
Don Mills, Ontario ® Wokingham, England ® Amsterdam ¢ Bonn
Sydney e Singapore ® Tokyo ® Madrid ® San Juan

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Addison-Wesley was aware
of a trademark claim, the designations have been printed in initial caps or all caps.

The programs and applications presented in this book have been included for their instruc-
tional value. They have been tested with care, but are not guaranteed for any particular purpose.
The publisher does not offer any warranties or representations, nor does it accept any liabilities with
respect to the programs or applications.

Library of Congress Cataloging-in-Publication Data

Gardarin, G. (Georges)
Relational databases and knowledge bases.

Bibliography: p.

Includes index. g
N1, Data base management. ‘2. Relational data bases.
1. Valduriez, Patrick. I1. Title.
QA76.9.D3G375 1989 005.75'6 88-6295
ISBN 0-201-09955-1

Copyright © 1989 by Addison-Wesley Publishing Company, Inc. All rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, or photocopying, recording, or otherwise, without the prior written

permission of the publisher. Printed in the United States of America. Published simultancously in
Canada.

CDEFGHI1J-DO-89

PREFACE

A database management system (DBMS), or simply database system, is char-
acterized by the data model it supports. The first DBMSs, designed in the 1960s,
were based on hierarchical or network models and have been viewed as extensions
of file systems in which interfile links are provided through pointers. The data
manipulation languages of these systems are low level and require users to op-
timize the access to the data by carefully navigating in hierarchies or networks.

Since its inception in 1970, the relational data model has continued to gain
wide acceptance among database researchers and practitioners. Unlike the hier-
archical and network models, the relational model has a solid theoretical basis
and provides simple and uniform representation for all data independent of any
physical implementation. These advantages enabled the development of high-level
data manipulation languages, freeing the user from data access optimization, and
provided a solid basis for automating the database design process.

In the early 1980s, the first relational database systems appeared on the
market, bringing definite advantages in terms of usability and end user produc-
tivity. Since then, their functional capabilities and performance have been sig-
nificantly improved. Most relational DBMSs today support an integrated set of
fourth-generation programming language tools to increase end user productivity.
Most also provide extensive support for distributed database management. The
development of fourth-generation tools and distributed database management
capabilities has been facilitated by the relational model.

Current relational DBMSs are targeted to traditional data processing (busi-

iv Preface

ness) applications. More recently, important application domains, such as expert
systems and computer-aided design, have shown the need to manage large
amounts of data. Many believe the relational model will be used in future data-
base systems that will support these new applications.

This book gives a comprehensive presentation of the relational model and
the state-of-the-art principles and algorithms that guide the design of relational
DBMSs. In addition, it shows how these systems can be extended to support new
database application domains that typically require deductive capabilities and the
support of complex objects. Such extensions are the basis of relational knowledge
base systems (KBMSs) as developed in several research centers. Finally, the book
introduces the use of technology to manage distributed databases. This book will
enable readers to appreciate the practical superiority of the relational model for
intensive database management. The application of the principles and algorithms
presented in this book is illustrated in our recent book Analysis and Comparison
of Relational Database Systems, (Addison-Wesley), which examines the best re-
lational database systems and main relational database machines.

The current book is based on material used in undergraduate and graduate
courses taught at the University of Paris 6 and other French schools. It follows
a natural progression from introductory matter, such as file systems, to advanced
topics, such as deductive databases. Knowledge of the basic principles of data-
base systems will facilitate reading of this book but is not necessary. The book
can be used by teachers to extend a traditional introduction to database tech-
nology and by professionals to extend their understanding of relational databases
and knowledge bases. The main concepts are clearly exhibited by informal def-
initions.

The book contains twelve chapters. Chapter 1 gives an introduction to first-
order logic and operating systems, important topics since relational DBMSs and
KBMSs are mainly implementations of logic-based languages on operating sys-
tems. Chapters 2 and 3 provide an introduction to database technology. Chapter
2 deals with file management, more in the perspective of data access methods
used by relational DBMSs. Chapter 3 introduces the objectives and architectures
of DBMSs, emphasizing standardization and relational DBMS architectures.

Chapters 4 and 5 present the relational data model and associated database
design technology. Chapter 4 gives a comprechensive presentation of the relational
model including the model data structures and associated query languages based
on relational algebra and relational calculus. In particular, the high-level, and
now standard, Structured Query Language (SQL) is introduced. Chapter 5 dcals
with database design in a relational framework. It demonstrates the value of the
relational model and the associated normalization theory in helping the database
designer’s task.

Chapters 6 to 9 treat problems peculiar to the implementation of a rela-
tional DBMS. Chapter 6 looks at semantic data control: views, security, and
semantic integrity. Chapters 7 and 8 deal with transaction management in DBMSs
in gencral. Chapter 7 is devoted to concurrency control. Chapter 8 1s devoted to

Preface \Y

reliability; it examines the solutions that maintain data consistency despite system
and media failures. Chapter 9 deals with query processing and query optimiza-
tion.

Chapters 10 to 12 decal with the extension of relational database systems to
support knowledge based applications and distributed environments. Chapter 10
is devoted to the addition of deductive capabilities in relational databasc systems.
These capabilities arc of major importance for knowledge-based applications.
Chapter 11 deals with the incorporation of some key aspects of object orientation
in relational database systems. These aspects are the support of potentially large
objects of rich type and complex structures. These capabilities are required by
applications such as office automation and computer-aided design. Chapter 12
is an introduction to distributed databases whose management, although diffi-
cult, is simplified by the relational model.

We have been helped by many colleagues that we would like to thank: S.
Abiteboul, B. Boettcher, H. Boral, C. Delobel, M. Franklin, G. Kiernan, R.
Krishnamurthy, G. Lohman, R. Michel, C. Mohan, P. Neches, F. Pasquer, M.
Scholl, E. Simon, M. Smith, Y. Viemont, and J. Zeleznikow. We are also grate-
ful to the following reviewers for their comments and suggestions: Daniel Ro-
senkrantz, State University of New York at Albany and Dennis Shasha, Courant
Institute of Mathematics. Furthermore, we would like to thank all our colleagues
of the Advanced Computer Architecture program at MCC, Austin, and the
SABRE project at INRIA, Paris, and the University of Paris, VI, for their sup-
port.

CONTENTS

Preface iii
1 Preliminaries 1

1.1 Introduction 1

1.2 Disk Operating Systems 1

1.3 First-Order Logic 8

1.4 Conclusion 19

1.5 References and Bibliography 20
2 File Management 21

2.1
2.2
2.3
2.4
2:5
2.6
2.7
2.8

Introduction 21

File Management Objectives and Basic Notions 22

File Management System Architecture and Functions 30
Hashing Access Methods and Organizations 36

Indexed Access Methods and Organizations 43
Multiattribute Access Methods 57

Conclusion 62

References and Bibliography 62

DBMS Objectives and Architectures 65

3.1
3.2

Introduction 65
Objectives of a DBMS 66

viii Contents

3.3 Basic Concepts and Methods 74

3.4 ANSI/X3/SPARC Three Schema Architecture 81
3.5 Relational DBMS Architectures 85

3.6 Conclusion 88

3.7 References and Bibliography 89

4 The Relational Model 91
4.1 Introduction: Objectives of the Model 91
4.2 Data Structures of the Model 92
4.3 Minimum Integrity Rules 96
4.4 Relational Aigebra and Its Extensions 99
4.5 Nonprocedural Languages 118
4.6 A Logical Interpretation of Relational Databases 128
4.7 Conclusion: An Extensible Data Model 131
4.8 References and Bibliography 131

5 Relational Database Design 133
5.1 Introduction 133
5.2 Design Process Analysis 134
5.3 User Requirement Analysis 137
5.4 View Integration Phase 139
5.5 Normalization Theoty 141
5.6 Internal Schema Optimization 175
5.7 Conclusion 178
5.8 References and Bibliography 179

6 Integrity, Views, and Security 183
6.1 Introduction 183
6.2 Definition of Integrity Constraints 184
6.3 Analysis of Integrity Constraints 190
6.4 Data Integrity Enforcement 196
6.5 View Management 201
6.6 Data Security 208
6.7 Conclusion 211
6.8 References and Bibliography 212

7 Concurrency Control 215
7.1 Introduction 215
7.2 Definitions and Problem Statements 217
7.3 Characteristics of Conflict-Free Executions 220
7.4 Initial Timestamp-ordering Algorithms 227
7.5 Optimistic Algorithms 233
7.6 Two-Phase Locking Algorithmg 235
7.7 Deadlock Solutions 243

Contents

7.8 Conclusion 249
7.9 References and Bibliography 250

8 Reliability 253
8.1 Introduction 253
8.2 Basic Concepts 255
8.3 Algorithms 261
8.4 Implementation of Updates 266
8.5 Transaction Commit 268
8.6 Conclusion 212
8.7 References and Bibliography 273

9 Query Processing 275
9.1 Introduction 275
9.2 Objectives of Query Processing 276
9.3 Parameters Influencing Query Processing 279
9.4 Issues in Designing a Query Processor 281
9.5 Query Decomposition 285
9.6 Algebraic Restructuring Methods 291
9.7 Query Optimization 295
9.8 Implementation of Relational Operations 308
9.9 Conclusion 32
9.10 References and Bibliography 313

10 Deductive Databases 315
10.1 Introduction 315
10.2 What Is a Deductive Database? 316
10.3 Rule Definition Language for Databases 322
10.4 Deductive Query Processing and Modeling 334
10.5 Recursive Query Processing 346
10.6 Deductive DBMS Architectures 368
10.7 Conclusion 372
10.8 References and Bibliography 373

11 Object Orientation in Relational Database Systems 379
11.1 Introduction 379
11.2 Object Support in Current Relational Database Systems 380
11.3 Support of Abstract Data Types 383
11.4 Complex Object Model 390
11.5 Implementation Techniques for Complex Objects 399
11.6 Support of Object Identity 403
11.7 Conclusion 408
11.8 References and Bibliography 410

X Contents

12 Distributed Databases 413

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10

Index

Introduction 413

Distributed Database Capabilities 414

Objectives 418

Issues 421

Architectures 425

R*, a Homogeneous DDBMS 428
INGRES/STAR, a Heterogeneous DDMBS 430
DBC/1012, a Shared-Nothing Multiprocessor System
Conclusion 434

References and Bibliography 434

437

431

PRELIMINARIES

1.1 Introduction

Database management systems (DBMSs) are software products managing large
sets of data stored in computers that can be queried and updated by end users.
The design and implementation of DBMSs require practical and theoretical
knowledge. In this chapter, operating system concepts and logic concepts relevant
to the study of DBMSs are presented.

1.2 Disk Operating Systems

Operating systems are the basic data management tool offered by general-pur-
pose modern computers. A relational database management system is built on
top of a disk operating system (DOS). It stores structured data on a magnetic
disk and retrieves structured data from a magnetic disk. The disk and the com-
puter are managed by the operating system. Thus a DBMS is a layer of software
components between the user and the DOS. It strongly interacts with the operat-
ing system. Clearly it is important to understand the functions and services of-
fered by an operating system before studying database systems.

2 1 ® Preliminaries
1.2.1 Computer Architecture

For a discussion on disk operating systems, it is useful to review computer archi-
tecture (see, for example [Baer80], for a detailed analysis). A simple computer
architecture is shown in Fig. 1.1. At the heart of the computer is the instruction
processor (CPU). It decodes and processes instructions that it obtains from main
memory through the bus, the information highway on which all units talk and
listen. Specialized sets of instructions can be executed by special-purpose proces-
sors in an enhanced computer architecture. Such a processor would be the input/
output (I/0O) processor, which, operating in parallel with other processors, trans-
fers data from main memory to secondary peripheral devices (output) or from
these devices to main memory (input).

A computer architecture like the one in Fig. 1.1 supports a basic software
program that is the DOS. The DOS is a set of software layers built around a
hardware machine to take charge of the user commands. These commands exe-
cute user programs submitted by multiple users in parallel. Thus the DOS sup-
ports the simultaneous execution of user programs that reside in main memory.
One of the main functions of a DOS is to manage these simultaneous executions.

Main
Memory
| |
(BUS)
| | | |
Instruction /O
Processor Processor
A A
\
FD
HD A
(-
TE

FD = Floppy Disks TE = Terminals
HD = Hard Disks PR = Printer

FIGURE 1.1 A typical computer architecture

1.2 Disk Operating Systems 3

To run several user programs simultancously, a DOS must share the computer
resources between them. Resources are the CPU, main memory, external devices,
and mass memory.

1.2.2 CPU Management

Resource sharing and simultaneous execution of user programs require the man-
agement of parallel processes. In general, a process is created by a master process
using a special command. The process dedicated to receiving and analyzing user
commands is responsible for creating first-level user processes. When a process
has been created, it can execute a program by overlaying itself with the program
machine code. It can also create new processes. Processes are deleted either by
themselves or by other processes. In general, creating and deleting processes is
the role of the process manager.

Processes must be synchronized as they compete for the machine resources.
The main resource is the CPU. It is shared among the processes by time-sharing
techniques. The system is organized around a scheduler, which allocates the CPU
to the processes for a given period of time (perhaps a few milliseconds). Because
certain resources cannot be simultaneously shared (such as I/0 devices), a pro-
cess may be waiting either for the completion of an external task (for example, an
1/0 on a disk) or for the exclusive use of a resource (for example, an /O channel
or a shared portion of main memory). In that case, it is in a dormant state,
meaning that it is not candidate for the CPU. Each time the scheduler is invoked,
it must select one process among the ready list of processes (those that are ready
to use the CPU). Then it gives the CPU to the elected ready process, which be-
comes active. Up to the completion of either the task it wants to perform or its
period of time, the active process code is executed by the CPU. The active process
can also try to use a resource that is not free (because it is used in parallel by
another process). The scheduler makes it wait and then reallocates the CPU to
another ready process, if any, or waits for a ready process. A process waiting for
a resource is awakened (put in ready state) by a signal handler, which receives
and processes external events (interruptions).

In summary, the first layer of a DOS is the CPU manager, which may be
divided in three modules (Fig. 1.2).

1.2.3 Memory Management

The next layer of a DOS is the memory manager. Memory management shares
the main memory among the concurrent processes. A process may need memory
space to store program code and data. It then demands allocation of memory

4 1 ® Preliminaries

PROCESS
MANAGER

SIGNAL SEVN: 10NN 13
MACHINE

HANDLER

FIGURE 1.2 CPU manager

pages (that is, blocks of continuous memory space, such as 4K bytes) to that part
of the memory manager called the memory allocator. If pages are available, they
are allocated to the process. When no page is available, a page replacement strat-
egy is applied to bring out a page content and reallocate it to the demanding
process. Such strategies may consist of writing on disk the content of the least
recently used page (LRU) or the least frequently used one (LFU) or be more
sophisticated. When a process no longer needs a memory page, it must release it,
using a page release command of the memory allocator.

As pages are allocated and deallocated dynamically to processes, there is
no reason for the memory space of a process to be continuous. Thus the memory
manager must perform the mapping of continuous virtual addresses to the dis-
continuous physical space. This can be done by keeping pages allocated to pro-
cesses continuous (one solution is to move process code and data in main memory
when necessary) or by using a virtual memory management unit. Virtual memory
management organizes pages in segments. A virtual address is composed of a
segment number (S#), a page number in the segment (P#), and an offset in the
page (D#). A hardware device called the memory management unit (MMU) maps
virtual addresses <S#,P#,D#> to physical addresses. The role of the memory
manager is to maintain the necessary tables for the MMU. This includes segment
tables and page tables for each process. The memory manager must also ensure
that processes correctly access to memory, particularly that a process does not
read or write the memory allocated to another process (except if both processes
agree to share memory). Such violations are generally detected by the machine
hardware, which then invokes the memory manager.

In summary, the memory manager may be seen as composed of three parts,
the first one allocating/deallocating pages (the page allocator), the second one
controlling accesses to pages, and the third one swapping in/out pages from
memory to disk (Fig. 1.3).

1.2 Disk Operating Systems 5

ACCESS

HARDWARE

MANAGER

SWAPPING
STRATEGY

FIGURE 1.3 Memory management functions in the DOS architecture

1.2.4 1/0O Management

The DOS must also be able to communicate with the external world. This is the
role of the I/0 control layer. I/O management performs data transfer between
the external devices (such as the magnetic disk and the user terminal) and a buffer
pool maintained in main memory. A buffer is a data space in main memory com-
posed of continuous pages in which data enter and go out at different speeds,
generally in blocks of different sizes. A buffer pool is composed of several
buffers, which are often shared between user processes and system I/O processes
to avoid data moves.

Specific modules called device handlers read and write buffer contents
(blocks of data) on devices. In general, there is one handler per class of device.
A handler may manage a queue of I/0 requests. When a data unit is to be read
from a device by a process, the system checks to see if it is in the buffer pool. If
it is, the system does not have to access the device, avoiding an I/0. If it is not,
then a full block is read from the device in a buffer. When a data unit is to be
written, it is put in a buffer, and control is often returned to the calling process
before the actual 1/0 is performed on the device. ‘

The effectiveness of the I/O manager is measured as a ratio between the
number of I/0 requests it saves (because data units are found or stored in
buffers) and the number of requests it receives. To improve effectiveness, 1/0
managers use sophisticated strategies, such as read ahead and deferred write.
Also the strategy for replacing buffers in the pool when none is free is an impor-
tant parameter.

In summary, the I/0O manager has two parts: the buffer pool manager and
the I/0 device handler (Fig. 1.4).

6 1 ® Preliminaries

BUFFER MANAGER

MEMORY

HARDWARE
MACHINE

MANAGER

FIGURE 1.4 1/O management in the DOS architecture

1.2.5 File and Basic Communication Management

With the next layer of the system, a user process can communicate with external
memories, with other processes, and with terminals. Messages or records may be
sent to or received from ideal external memories identified by a name (a file),
other processes, or terminals. The exchange of messages requires that a commu-
nication path be opened between the sender and the receiver using a specific open
command. Then reading and/or writing of messages can be done using the
name of the logical path. At communication end, the communication path must
be closed.

File management systems will be examined in Chapter 2. Communication
management is a complex process; only a basic part is included in the DOS kernel
presented here. This part corresponds to the basic functions of communication
access methods, such as exchanging blocks of data between processes with possi-
ble synchronization of the processes and communicating with terminals. Fig. 1.5
depicts the system architecture as it appears now.

1.2.6 Program Management and Utilities

The interface between the end user and the system implies a command language.
Thus the last layer of the DOS supplies a language to enter or leave the system,
to control files, and to manage programs. Program management includes the
necessary tools to execute a program. We briefly summarize the execution cycle
of a program.

Application programs are translated from high-level source program code
to executable machine instructions. Fig. 1.6 illustrates the steps performed to

1.2 Disk Operating Systems

1/O MANAGER

ARDWARE
MACHINE

_MANAGER

FIGURE 1.5 File and basic communication in the DOS architecture

Compiler

Machine Code

Linkage
Editor
+ Loader

v

Executable
Machine
Code

FIGURE 1.6 Source program translation

