i § BLACKSBLIRS CONTINUING EDUCATION SERIES™

APPLE"®
INTERFACING

by

Jonathan A. Titus, David G. Larsen, and
Christopher A. Titus

Howord’LU. Sams & Co,, Inc.

4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46268 USA

Copyright © 1981 by Jonathan A. Titus, Christopher A.
Titus, and David G. Larsen

FIRST EDITION
SECOND PRINTING-1982

All rights reserved. No part of this book shall be
reproduced, stored in a retrieval system, or transmitted
by any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission
from the publisher. No patent liability is assumed with
respect to the use of the information contained herein.
While every precaution has been taken in the
preparation of this book, the publisher assumes no
responsibility for errors or omissions. Neither is any
liability assumed for damages resulting from the use
of the information contained herein.

International Standard Book Number: 0-672-21862-3
Library of Congress Catalog Card Number: 81-84282

Edited by: Bob Manville
Illustrated by: Jill E. Martin

Printed in the United States of America.

Preface

The purpose in writing this book is to introduce you to the signals
within the Apple®* II computer and to show you how these signals
can be used to control external devices under the control of BASIC-
language programs. A general-purpose computer interface bread-
board has been developed to speed your circuit design and testing
so that you can easily perform the many interesting experiments that
are included in the book. By using a design system such as the one
described in this book, you will spend your time concentrating on
the principles involved, rather than troubleshooting your circuits.
However, you will have the opportunity to build and test many digi-
tal circuits, as well as circuits that use digital-to-analog and analog-
to-digital converters.

We have chosen to use the Apple II computer with 16K of read/
write memory, and the Applesoft™4 BASIC interpreter program.
This software provides a great deal of flexibility and it is worth hav-
ing it available when you are using external interface circuits. The
Applesoft BASIC interpreter has two general-purpose commands
that can be used to transfer information to and from the computer.
These instructions are easily mastered, without requiring a detailed
understanding of the 6502 microprocessor integrated circuit (IC)
that is used as the “heart” of the Apple.

First we will introduce you to the control signals that are available
from the Apple computer for interfacing, and we will show you how
they are used. Some of the signals will not be described, since they
are generally not used in interface circuits, and are meant to be used
by special interface devices that are manufactured commercially.

Our next step is to show you how the Apple can identify or address
external devices through the use of two general-purpose instructions,
PEEK and POKE. These commands are central to the control of ex-
ternal devices; we spend some time covering their operation and the
use of a variety of circuits that can be used to identify specific input/
output, or I/O devices. You will also see how the Apple can transfer
information to and from external devices over the bidirectional data

*Apple and Apple II are registered trademarks of Apple Computer, Inc.
tApplesoft is a trademark of Apple Computer, Inc.

bus; the basic circuits used for input ports and output ports are de-
scribed in detail. Real circuits are provided, so that you can quickly
use the many examples in designing your own interface devices.

You will also see the power of BASIC-language programs—as the
data is processed within the computer to provide meaningful results.
Simple control programs are provided to show you how BASIC-lan-
guage programs and I/O devices can interact. You will be able to
write simple control and data processing programs to go along with
your I/O ports and devices.

Since the computer is not always synchronized to external devices,
there must be some interaction between the computer and the vari-
ous I/0 devices so that each knows when the other is ready for some
appropriate action. This leads us to the topic of flags—those signals
that are used by the computer and by external I/O devices to allow
information to be transferred in an orderly fashion. Since flags are
important, we spend some time on them and on the corresponding
circuits that are actually used in external devices. Software is covered
too, since the flag circuits are useless unless they can be sensed by a
control program.

We have assumed that you have a fairly good understanding of the
commands in Applesoft BASIC. If you are just getting started with
the Apple computer, we hope that you will take some time to review
the simple commands, such as FOR, GOTO, IF ... THEN, PRINT,
and INPUT. Other commands will be introduced in the text and ex-
periments, and we will provide the details of their operation. At the
end of this book, the use of these and other commands should be
second-nature.

In Chapter 6, we have provided 16 detailed, step-by-step experi-
ments that you can perform to reinforce the many interfacing prin-
ciples that have been developed in the text. You will also see the
power of BASIC-language programs for interface control and for
actually processing the information that is involved in transfers to
and from I/O devices. We have made an effort to cover a broad spec-
trum of interesting interface applications. Throughout the experi-
ments, you will see that the same basic principles apply to all of the
interface circuits, from the simplest to the most complex.

We realize that it is difficult to write a book like this for an audi-
ence that has a wide range of backgrounds, from the beginner to the
advanced user. Thus, we have chosen to start at some middle point.
We have chosen to skip basic binary numbering, decimal-to-binary
conversions, basic digital electronics, and breadboarding. These top-
ics are covered in detail in other books, and the reader who is in the
middle of our assumed spectrum of readers probably has a good
understanding of these topics. In some places, a paragraph or two of
review material have been provided, just to serve as a refresher. We

make no attempt to provide much detail here, simply enough to get
you started.

We have assumed some familiarity with SN7400-family digital in-
tegrated circuits, or chips, such as the SN7402 quad Nor gate and the
SN7475 quad latch chip. Other complex chips will be introduced and
explained in sufficient detail so that you can use them as shown in
the text or experiments. If you wish to use these devices in other
applications, we suggest that you obtain the necessary data sheets
from the manufacturers. The data sheets will provide the necessary
information for a wide variety of uses, and they will also reflect any
basic changes or modifications that may have been made to an “up-
dated” device, or one that has been “enhanced” with some special
feature.

The Apple II computer has eight general-purpose 50-conductor
interface connectors in its case. The basic bus signals used in the ex-
periments are derived from the signals at these connectors, so if you
decide to design and build some of your own interface circuits that
will be plugged into one of these “slots,” you will find the same sig-
nals are readily available at the edge connectors. However, there are
also some special-purpose signals that are generated by the Apple to
make the interfacing task somewhat easier. These signals and their
uses are described in detail in Chapter 7. Since the signals are not
general purpose, but are specific to the Apple, and in many cases,
specific to a particular connector, they are described last. To show
you how these signals are used, a simple asynchronous-serial com-
munication interface circuit is described, and software to control it
is listed. This type of interface can be used to communicate with
other computers, serial printers, modems, and other interface devices
that use the asynchronous-serial data format.

We have not described assembly-language programming, since
this is a specialized topic and requires a great deal of background.
However, we have provided one simple assembly-language subrou-
tine for you to use in several of the experiments. There is a good
reason for including this subroutine; the equivalent function is not
readily available in Applesoft. The function required is the logical
Anping of 8-bit bytes. The logical axp in Applesoft is simply a true-
or-false AND operation, and it cannot be easily used for bit aAxping.
The assembly-language subroutine also provides you with an intro-
duction to how such routines can be accessed by a BASIC-language
program. We have chosen to use the more complicated USR(X)
command, rather than the CALL command, since we think that
more will be learned.

We found that there were some limitations to the Apple. For ex-
ample, there is no simple “rounding” command that can be used to
round a number to a specific number of decimal digits, for example

4.1986 to 4.20. Likewise, the absence of a bit-by-bit ANping command
was a limitation that was overcome with an assembly-language rou-
tine. We also found that the potentially useful WAIT command that
is used to test individual bits will “hang up” the computer if the con-
dition is not found. The computer continues to wait if the condition
is not met, and you must reset the computer to get your program
going again. A color display and nice graphics are available, al-
though we used a black/white monitor in our system.

Most of the special purpose chips, such as the analog converters,
have been chosen because of their simplicity, low cost, and avail-
ability. This is not meant to be an endorsement of these products. As
your interfacing sophistication increases, you will find other special-
purpose devices that can serve the same function, but perhaps with
added features, more resolution, different power supplies, etc. Our
aim is to get you started, and not to provide you with a sourcebook
of every possible interface to the Apple computer system. An impos-
sible task in any case.

If you are interested in some additional reading about more ad-
vanced topics, we recommend:

6502 Software Design (21656).

Programming & Interfacing the 6502, With Experiments (21651).

Microcomputer-Analog Converter Software and Hardware Inter-
facing (21540).

We also recommend TRS-80 Interfacing, Book 2. While written
around the TRS-80 computer, this book details more advanced inter-
facing topics such as driving high-current/high-voltage loads, serial
communications, remote control, analog converters, filtering and
data processing, and other interesting topics. You will quickly see
that the similarities between the TRS-80 and Apple are much greater
than their differences. Control signals and BASIC commands are al-
most identical. All of the books noted above are available from
Howard W. Sams & Co., Inc., 4300 West 62nd Street, Indianapolis,
IN 46268.

The pin configuration figures used in most of the figures, unless
otherwise noted, are provided through the courtesy of Texas Instru-
ments, Incorporated. The names Apple and Applesoft are trade-
marks of Apple Computer, Inc., Cupertino, CA. The name TRS-80
is a registered trademark of Radio Shack.

We hope that you enjoy this book, and that it leads you to design
and build some interface circuits of your own.

JonaTHAN A. TiTUs, CHRISTOPHER A. TrTus and Davip G. LARSEN
“The Blacksburg Group”

Contents

CHAPTER 1

6502 PROCESSOR

Memory—Input/Output (I/0) Devices—Software I/O Control In-
structions

CHAPTER 2

APPLE INTERFACING

1/0 Device Address Decoding—Device Addressing

CHAPTER 3

1/0 DEVICE INTERFACING .

Output Ports—Input Ports

CHAPTER 4

FrAacs aAND DECISIONS .

1/0 Device Synchronization—Logical Operations and Flags—Flag-
Detecting Software—Assembly-Language Logical Operations—Com-
plex Flags—Flag Circuits—Multiple Flags—Interrupts—Final Words

CHAPTER 5

BREADBOARDING WITH THE APPLE

Basic Breadboard—Connections to the Apple—Other Considerations

26

44

57

69

CHAPTER 6

AprpPLE INTERFACE EXPERIMENTS .

Introduction to the Experiments—Use of the Logic Probe—Use of the
Device Address Decoder—Using Device Select Pulses—Constructing
an Input Port—Multibyte Input Ports—Input Port Applications—In-
put Port Applications (II)—Constructing an Output Port—Output
Port and Input Port Interactions—Data Logging and Display—Simple
Digital-to-Analog Converter—Output Ports, BCD and Binary Codes
—Output Ports Traffic Light Controller—Logic-Device Tester—Sim-
ple Flag Circuits—A Simple Analog-to-Digital Converter

CHAPTER 7

ON THE Bus

Interface Control Signals—An Interfacing Example

APPENDIX A

Locic Funcrions .

APPENDIX B

PArTs REQUIRED FOR THE EXPERIMENTS

APPENDIX C

6502 MicroPROCESSOR TECHNICAL DATA

APPENDIX D

APPLE INTERFACE BREADBOARD PARTs .

APPENDIX E

PriNTED-CIRcUIT BOARD ARTWORK .

INDEX

86

. 164

. 180

. 183

. 185

. 195

. 197

. 203

CHAPTER 1

6502 Processor

The Apple II® (Apple®) computer system by Apple Computer,
Inc., uses the 6502-type of microprocessor integrated circuit. This
“chip” forms the heart of the central processing unit (CPU) of the
computer, the place where the actual mathematical, logical, decision-
making, and other operations take place. The 6502-type microproces-
sor chip is manufactured by MOS Technology (Norristown, PA
19401), Rockwell International (Anaheim, CA 92803) and Synertek
Corporation (Santa Clara, CA 95051).

The 6502 is an 8-bit processor. Thus, all of the mathematical, logi-
cal, data transfer, input and output operations operate on eight
binary bits at a time. Each bit, of course, can be either a logic one
or a logic zero. The 6502 uses an 8-bit data bus to transfer informa-
tion between itself and various memory locations and input/output
(I/O) devices such as a keyboard, printer, etc. In cases where the
value of the information exceeds the limit of eight bits, multiples of
8-bit data words are used. Each 8-bit data word is generally referred
to as a byte.

You should realize that the maximum value that can be expressed
with eight bits is 11111111, or 255,,. If larger values are to be oper-
ated on in an 8-bit computer system, then multibyte operations are
required. Generally, this means that corresponding data bytes in two
data words are operated on, followed by the operation being per-
formed on the next corresponding set of bytes in the large data
words. In this way large values, beyond the value of 255, may be
readily processed. It is important to remember, though, that the

Apple and Apple II are registered trademarks of Apple Computer, Inc.

Apple CPU can only process and transfer eight bits or one byte at a
time.

The 6502 uses a single set of eight pins to make the connection
with the data bus in the computer. This data bus is used to transfer
information both to and from the computer. This type of a bus is
called bidirectional, since it allows information to flow in two dif-
ferent directions. This is much like a highway that is used to allow
vehicles to drive one way in the morning and to allow vehicles to
travel in the opposite direction in the evening.

The 6502 generates control signals on the integrated circuit that
are used both internally and externally to supervise and manage the
flow of information on the bus, in one direction at a time. We will
explore the generation and use of these signals later in this book.

MEMORY

All computer systems have some memory associated with them. In
general, the memory is used to store both a program that will control
the operation of the computer, as well as the information that is to
be processed. In the 6502 computer, each memory location can be
used to store eight bits of information, or one byte of data. Most
memories consist of multiples of these one-byte storage locations,
generally in multiples of 1024, abbreviated 1K.

The memory locations must be addressed in some way so that the
computer knows exactly where it is to store data or obtain program
step information. The 6502 microprocessor chip has 16 address out-
puts allowing it to specify any one of 2'° or 65,536 memory locations,
each of which can contain one byte. This is often shortened to 64K,
indicating that 64K bytes of information can be addressed. In almost
all microcomputer memory systems, each memory location is
uniquely addressed with a 16-bit address.

The address bus lines are labeled A0 through Al5, corresponding
to the least-significant bit (LSB) through the most-significant bit
(MSB), respectively. The LSB and MSB can both be either a logic
one or a logic zero, but their position gives the LSB a value of zero
or one and the MSB a value of zero or 32,768. Since the 6502 is an
8-bit processor, the address lines are frequently split into two groups
of eight lines each, A7-A0 and A15-A8. The lines A7-A0Q are referred
to as the low or LO address, while lines A15-A8 are referred to as the
high or HI address. In many 6502-based computers, the HI address
is also called the page address, since the memory may be arbitrarily
divided into 256 pages, with 256 bytes per page. The uses of the ad-
dress bus will be explored further when software instructions are dis-
cussed and when interface circuits are developed. Unlike the data
bus, the address bus is unidirectional, the address information flows

10

vss o 1 40 p RES

RDY o 2 39 B @,(0UT)
QI(OU_T) = 3 38 P S.0.

RQ o 4 37 | ®(IN)

NC. o 5 36 B NC.
NMI < 6 3B NC
SYNC o 7 34 P RW
Ve «H 8 33 DO
A0 o 9 32 b DI
Fig. 1-1. 6502 Microprocessor chip Al =10 31 P D2
pin configuration. A2 =11 30 P D3
A3 A 12 29 F D4
M 13 28 = D5
A5 14 27 = D6
A6 o 15 26 p D7
A7 16 25 | AlS
A8 o 17 24 > Al4
A9 = 18 23 | A13
Al0 19 22 > Al2
All o 20 21 P VSS

in only one direction, from the CPU to the memory and to external
devices.

The pin configuration of the 6502 is shown in Fig. 1-1. Although
most of the other signals may be meaningless to you now, you should
be able to identify the 8 data bus input/output pins and the 16
address output pins.

Since the memory section is being discussed, there are two basic
types of memory devices used in microcomputer systems. They are:

1. Read/Write—Read/Write (R/W) memory is used for the stor-
age of data that will be changed or updated. The computer
must be able to place the information in a memory location and
then be able to read it back. Programs that will change are also
stored in R/W memory for the same reason. The lowest cost
Apple computer contains 16,384 or 16K bytes of R/W memory.

2. Read-Only—Read-only memory (ROM) is used when data val-
ues and program steps will not be altered. The BASIC inter-
preter program in your Apple system is contained in read-only
memory chips. The Apple BASIC interpreter is stored in 12K
of ROM.

There are various sub-classes of these types of memory devices.
The R/W memories may be either static or dynamic. Static memory
chips will maintain the values stored in them until they are changed.
Dynamic memories require refreshing by external hardware every
few milliseconds or they will “forget” or lose the data stored in
them. The R/W memories in the Apple are dynamic, with the neces-

sary refreshing circuitry contained on the computer printed-circuit
board.

There are many types of read-only memories. The various types
are generally all static, the differences occurring in the means of stor-
ing the 8-bit values in the memory locations. The two most important
types are mask-programmed and field-programmed. The mask-pro-
grammed devices have data values, program steps, etc., stored in
them during the various manufacturing steps. They are generally re-
ferred to as ROMs. The field-programmable devices require some
kind of special programming circuitry to store the logic ones and
zeros in the various locations. Some of the field programmable
ROMs, or PROMs, as they are generally called, can be erased under
high-intensity ultraviolet light. They can then be reprogrammed.
This is very useful when programs are being developed that will be
stored in read-only memory. It does not require the development of
masks and chips—an expensive process—each time a program bug is
found or a change is made.

A few final words are required about semiconductor memory de-
vices. The read-write devices are volatile, since data (your program
and values) will “evaporate” or disappear when power is removed
from the system. The read-only memories, on the other hand, are
considered to be nonvolatile, since they will maintain the data or
program steps (the BASIC interpreter) when the power has been
removed.

Most memory integrated-circuit packages or chips do not have all
16 of the address lines connected to them. They have only enough
address connections to uniquely address the memory locations within
the individual chip. Thus, a 64-byte chip, small by standards of to-
day, would only have 6 address line inputs while a 1024 (1K) byte
memory chip would have 10 address line inputs. Memory chips such
as these have an additional control or chip-enable input that allows
banks or groups of the chips to be selected, one set at a time. Various
decoding and selecting circuits may be used, thus allowing a 32K
block of memory to be constructed from 64-byte or 1K byte chips,
or even combinations of the two. The main point here is that the
memory chips do not require all 16 address lines to be connected
directly to them, although some combination of all 16 address bits
will be used to uniquely select one byte. You should not be confused
when you are confronted with a 1K X 4 bit memory that only has
10 address inputs and a chip enable input. This concept will be de-
veloped further as you study input/output data transfers.

One control signal is generated by the 6502 processor chip to con-
trol the flow of information on the data bus. This signal is noted as
READ/WRITE, or more simply, R/W. Whenever a read, or a write,
operation is to take place, the 6502 must specify a 16-bit address to

locate the memory “cell” that is to be involved in the transfer. In this
case, the cell is an 8-bit word or byte.

The “bar” over part of the signal notation indicates that when the
signal is a logic zero, a write operation is taking place; and when in
the logic one state, a read operation is taking place. Thus, a single
line controls all of the memory functions. In some 6502-based com-
puter systems and peripherals, you may see the signal “split,” to pro-
vide two memory control signals, memory read (MEMR or MR),
and memory write (MEMW or MW). This takes some additional
gating, so in most cases, the R/W signal is used by itself. It is avail-
able at pin 34 on the 6502 microprocessor chip.

You may also see the notation RAM used to incorrectly signify
read/write memory. The acronym RAM stands for random-access
memory. In fact, all of the modern, easy-to-use memory devices are
random access, since one may address one location and then any
other, without having to sequence through all of the locations be-
tween the two addresses.

Pin configurations for typical memory chips have been provided
in Fig. 1-2.

For additional information about memory devices, we refer you to

® Intel Memory Design Handbook, Intel Corporation, Santa
Clara, CA 95051, 1975.

PIN CONFIGURATION

PIN CONFIGURATION LOGIC SYMBOL
a ~ 24 [vee
~ 02 s AReH 1 BEVe | l/\\o
A5[: 3 22 : Ag“] A5: 2 17 b A7 Al |/01 —
Ao 3 16 P Ag 2
A4 21DVBB M 4 214 15| A — 23 o, —
A 20 DC_S/WE Ao 5 upn, — | AA 2
a2 m2708 1917 wo M 6 B0, | A65 1105
= 12 = 1104 A
a e 18 [] prOGRAM sd s 11 =10, A7 10
(Lse) Ao [8 17[Jo7 mse) GNDH 9 10 P WE A: —
(Lse) oo [} o 160] 06 T T
o1 [15[Jos
o2 14[] 04
ws [12 13[]o3 PIN NAMES
ARy ADDRESS INPUTS Vo POWER (+5V)
PIN NAMES \A_IE WRITE ENABLE GND GROUND
Ao A | ADDRESS INPUTS () CHIP SELECT
0,0s | DATA OUTPUTS/INPUTS
E?l/wus CHIP SELECT/WRITE ENABLE INPUT /0,104 DATA INPUT/OUTPUT

Fig. 1-2. Pin configuration for 2708 1K X 8 PROM and 2114 1K X
4 R/W memory.

13

® The 8080A/9080A MOS Microprocessor Handbook, Advanced
Micro Devices, Inc., Sunnyvale, CA 94086, 1977.

® Mostek Memory Products Catalog, Mostek Corporation, Car-
rollton, TX 75006, 1977.

® Bipolar and CMOS Memory Data Book, Harris Semiconductor
Prod. Div., Melbourne, FL 32901, 1978.

INPUT/OUTPUT (1I/O) DEVICES

Most microcomputer-based systems are worthless without some
attached I/O devices. These devices may be standard peripherals,
such as card readers, printers, displays, or they may be sensors, con-
trollers, and other devices that most people do not normally associate
with computers. The Apple is no exception. It already has several
I/O devices associated with it: a television display, a cassette re-
corder, and a keyboard.

Other I/0 devices can be added to your computer. These devices
may be of your own design or they may be standard, commercially
available devices that are compatible with the Apple. These I/O
devices are much like the individual memory locations that were dis-
cussed in the previous section. The I/O devices are attached to the
data bus, since data is transferred to them and from them, and they
are also connected to the address bus so that they may be uniquely
addressed by the 6502 microprocessor chip.

A control signal, READ/WRITE or R/W, is used to synchronize
the flow of data to and from the I/O devices. This signal is also used
in 6502-based computer systems to control the flow of information
to and from the memory chips. Thus, there is no differentiation be-
tween memory addresses and 1/O device addresses in 6502-based
computers. In computers that are based upon the 8085- or Z-80-type
microprocessor chips, there are different techniques that are used to
address memory and I/O devices independently. Since only one syn-
chronizing signal is used to control memory and I/O devices, the
Apple’s 6502 processor will be either reading dr writing at all times.
When the R/W signal is a logic one, the 6502 is reading information
from the data bus. When the R/W signal is a logic zero, the 6502 is
writing data to an external I/O device, or fo a memory location. The
“bar” over the W simply means that the write operation takes place
when the R/W signal is a logic zero. You may see other signals with
such bars over their names. This simply means that the signals are
active in the logic zero state.

Since we will be concentrating on the use of I/ O devices with the
Apple, we have left a great deal of the specific discussion to the re-
maining sections.

14

Review

At this point, you should understand that the 6502 transfers and
operates on eight bits of data at a time. Complex calculations and
operations often require multiple groups of eight bits or bytes. The
bytes are transferred to and from the 6502 CPU on an 8-bit bus.

Table 1-1. Control Signals Used for Interfacing

DATA BUS D7-DO An 8-bit bidirectional set of lines for transfer of
information between the CPU and 1/O devices.
ADDRESS BUS A15-A0 A 16-bit unidirectional address bus used to ad-

dress both memory and 1/O devices.
A15-A8 HI address bus, most-significant eight address

bits.
A7-A0 LO address bus, least-significant eight address
bits.
CONTROL SIGNAL RIW Read/write control signal.

NOTES: The “’bar’’ notation, i.e., W, indicates a logic zero is the “active’ state, the state that
causes the corresponding action to take place.

In each case in which a signal is enumerated, the numbers increase as the significance of the
bits increases, i.e., A15 = most-significant address bit (MSB).

The 6502 uses a 16-bit address bus to address individual memory
location and 1/O devices. The address bus is frequently broken into
a HI and LO address bus, of eight bits each. The single control sig-
nal, R/W, controls the flow of information to and from the 6502 CPU.
The signals and their designations are noted in Table 1-1.

SOFTWARE 1/O CONTROL INSTRUCTIONS
1/0 Commands

The Apple computer has a number of instructions that are used to
control 1/ O devices. For the most part, though, these instructions are
used to control specific I/O devices or to perform specific functions.
Without realizing it, you are already familiar with some, if not all,
of these I/O instructions.

Here are some specific examples of these I/O control instructions,
to refresh your memory.

The INPUT and PRINT commands are probably familiar to you.
The INPUT command causes a BASIC program to stop and wait for
an input from the keyboard. The PRINT command causes an answer
or string of characters to be “printed” on the tv screen.

Example 1-1. A Simple 1/O Program
10 INPUT “VALUE OF X IS”; X
20 PRINT “ INPUT VALUE WAS"; X

15

If you executed the program in Example 1-1, the value associated
with the variable, X, would have to be entered into the computer
before the program passed control to statement 20. These two types
of I/O statements are frequently used to allow an operator to enter
a value and to see it displayed. There are many variations of both the
INPUT and PRINT commands, but these two examples serve to il-
lustrate the point; you have already been using I/O operations in
BASIC-language programs without difficulty.

You may have already discovered that there are also graphic dis-
play I/O commands in BASIC, too. These are commands such as
HOME, PLOT X,Y and SCRN (X,Y). The HOME command clears
the screen, and places the blinking cursor at the “home” position in
the upper left-hand corner of the tv screen. The PLOT and SCRN
commands require the use of “coordinates” to indicate where an
operation is to take place.

The program in Example 1-2 shows how some simple graphic dis-
play commands are used in a short program. This program generates
a display of randomly changing colored dots on the tv screen. If you
are using a black-and-white (b/w) tv, you will see the dots in vary-
ing shades of gray.

Example 1-2. A Random Color Pattern Generator Using 1/ O Commands

10 GR

20 X=INT(40°kRND(1)) + 1

30 Y=INT(40%RND(1)) + 1

40 COLOR=INT(15%RND(1)) + 1
50 PLOT XY

60 GOTO 20

L]

There are two other commands that you may not have considered
to be I/O commands. These are the LOAD and SAVE commands
that are used to read and store programs on cassette tapes. Each
command causes a preset series of operations to take place, control-
ling the cassette recorder. The use of these commands is fairly obvi-
ous, so we will not provide an example.

Other I/O commands are the IN#X and PR#X operations that are
associated with special I/O devices that can be substituted for the
keyboard and tv display. It is important that you realize that these
I/0 instructions are specific to the Apple computer and its BASIC-
language interpreter program. These instructions would be mean-
ingless to other 6502-based computer systems, unless they used the
Apple BASIC program. The instructions are also specific to one I/O
device, i.e., the HOME command will not have an effect on the cas-
sette recorder, or any other I/ O device. Likewise, the INPUT com-
mand controls the input of values only from the keyboard on the
console.

16

