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FOREWORD

In recent years there has been considerable research in
nonlinear functional analysis and its applications to differ-
ential equations. Hence it seemed appropriate, in the spring
of 1975, to plan a conference which would bring together work-
ers in this field to exchange thoughts, lay out a view of the
present state of the field, and explore areas of future
research.

This conference was held June 9 to 12, 1975 at Michigan
State University with R. Kannan, then a visitor at Michigan
State, and J. D. Schuur as its directors. Its format was six
one-hour lectures by the principal speaker, L. Cesari, who
developed in depth some aspects of the general topic; nine one-
hour lectures by other invited speakers, who reviewed different
aspects of the general topic; and research reports by partici-
pating mathematicians. This volume contains the lectures of
the principal speaker and of the one-hour speakers and con-
stitutes therefore the proceedings of the conference.

For his topic, Professor Cesari chose "Functional
Analysis, Nonlinear Differential Equations, and the Alternative
Method." He emphasized points at present under investigation,
in particular the use of Banach's fixed point theorem, a priori
bounds and topological arguments, monotone operators, and

Schauder's fixed point theorem.
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dr FOREWORD

The one-hour talks ranged from problems in bifurcation
theory to measurability of solutions of differential equations
to current aspects of degree theory.

In such a large and active area, a survey will necessarily
be limited by the choice of topics and a cutting point in time.
However, we hope that this volume will prove useful in further-
ing the aims of the conference.

The editors are grateful to the Michigan State University
Mathematics Department and its chairman, Professor J.E. Adney,
for financial support, advice, and encouragement.

We also appreciate the work of Marcel Dekker in producing
this volume, and of Mary Reynolds in typing it.

Lamberto Cesari
Rangachary Kannan

Jerry D. Schuur
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FUNCTIONAL ANALYSIS, NONLINEAR DIFFERENTIAL
EQUATIONS, AND THE ALTERNATIVE METHOD

Lamberto Cesari

University of Michigan

Section 1. The Alternative Method

1. Introduction. In this presentation of the alternative,
or bifurcation method emphasis is given to certain points of
recent research, in particular in connection with the use of
Banach's fixed point theorem (nos. 6-19), a priori bounds and
topological arguments (nos. 20-27), monotone operators (nos.
28-33), and Schauder's fixed point theorem (nos. 34-42).

We are interested in solving an operator equation Ax = O
in a space X. We shall think of A as the difference
A =E - N of a linear operator E, not necessarily bounded,
and of an operator N, not necessarily linear, and thus the
equation takes the form

Ex = Nx, x € X.
If E_l exists. or equivalently the null space of E is
trivial, then this equation can be written as x - E_lNX = 0,
or (I + KN)x = 0. This is a Hammerstein equation and very
extensive work has been done in this direction. For refer-
ences to the wide literature one can see [147].

Whenever KN 1is compact, concepts and methods of topo-

logical degree theory in function spaces are relevant, and we



2 Lamberto Cesari

should refer to the work of Leray-Schauder [167], Rothe [184],
and Nagumo [177, 178].

We are particularly interested in the case where E has
a nontrivial null space, the case which is often mentioned as
the "problem at resonance." Thus we shall not exclude that E
may have a nonzero null space. This will be actually the most
interesting case.

In the line of the bifurcation process of Poincare [180],
Lyapunov [171], and Schmidt [187] we should decompose the
equation Ex = NX into a system of two equations, possibly in
different spaces. Much work has been done in this direction,
for which we refer to [191] and [192].

The injection of ideas of functional analysis in the
last years has made the process a remarkably fine tool of
analysis, particularly in the difficult "problem at resonance"
in the usual terminology.

The general theory which has ensued, with all its var-
iants and ramifications through the works of many authors, is
often referred to as the bifurcation theory, or the alterna-
tive method ([6], [7]., [65], and recent expositions,

e.g., [21-23], [63]). It is being used in theoretical exist-
ence analysis of the solutions, in methods of successive
approximations of the solutions, in estimating the error of
approximate solutions, in problems of perturbations,and in

problems of bifurcation of eigenvalues.

2. The Alternative Scheme. To be specific, let us con-

sider an equation of the form

Ex = Nx. (2.1)



THE ALTERNATIVE METHOD NO. 2 3

where E:8(E) » Y is a linear operator, and N: p(N) » Y is
an operator, not necessarily linear, both E and N have
domains B/(E), B(N) in a Banach space X and ranges R(E),
R(N) in a Banach space Y, S(E) N B(N) # d.

Let us assume for a moment that the following holds (we
shall see in no. 3 that these assumptions are quite natural,
and they are also easily verified in the so-called selfadjoint
case). Let us assume that there are projection operators
P:X + X, Q:Y » Y (that is, linear, bounded, idempotent, or
PP = P, Q0 = Q), and a linear operator H, which we shall
consider as a partial inverse of E satisfying

H(I - QEx = (I - P)x for all x € B/(E), (k

QEx = EPX for all x € B&(E), (k2)
EH(I - Q)Nx = (I-Q)Nx for all x ¢ B(E) N B(N). (k3)

Under these assumptions, the equation Ex = Nx 1is equi-
valent to the system of two equations

x = Px + H(I - Q)Nx, (2.2)

Q(Ex - Nx) = O. (2.3)
Indeed, if (2.1) is satisfied, then by applying Q to equation
(2.1) we obtain (2.3). By applying H(I - Q) to (2.1) we
obtain H(I - Q)Ex = H(I - Q)Nx, and by using (kl) we obtain
(2.2). Cconversely, if (2.2) and (2.3) are satisfied, then,
by applying E to (2.2) we have Ex - EPx = EH(I - Q) Nx,
and by using (k2), (k3), also Ex - QEx = (I - Q)Nx, or
EXx - Nx = Q(Ex - Nx) = O.

Equations (2.2) and (2.3) are usually denoted as the

auxiliary and the bifurcation equations, respectively.
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Let X, = PX, X; = (I - P)X, ¥, = QY, v, = (I - Q)Y, so
that X and Y have the decompositions X = XO + Xq,
Y =%, +7Y (direct sums), Xy N X; = {0}, Y, Ny, = {o}.

The linear subspace of X of all elements x € X for which
Ex = O 1is often denoted as the null space of E, or kernel
of E, and denoted by ker E. When there are elements x # O
in X with Ex = 0, that is, kXer E 1is not trivial, then we
say that we have a resonance case. We shall always assume
that ker E C Xy - Also, we shall assume that Y, < R(E),

bH) =Y, R(H) = BE) N X;. Thus EHy =y for all y €Y,
HEx = x for all x € B/(E) N X;. Often, we may assume

ker E = XO' Yl = R(E). 1In this particular situation the bi-
furcation equation reduces to QNx = O.

If we write X* = Px, then the auxiliary equation can
always be written in the form of a fixed point statement:

x = Tx, Tx = x* + H(I - Q)Nx, (2.4)
where T 1is easily seen to map the fiber P—lx* into itself.
The auxiliary equation can also be written in the form of a
Hammerstein equation:

X + KNx = x , K= -H(I - Q). (2le 59

Finally the auxiliary equation, written in the equivalent
form

EX - Nx = Q(Ex - Nx),
is often called the relaxed equation, or relaxed problem.

There are certain rather general situations (N locally
Lipschitzian, N monotone, etc.) under which the operators

P, Q, H can be so chosen that the ensuing map T 1is a

contraction map on suitable sets, or has other suitable



