2
L
z;

/s t b : : ; ‘ F } Y\‘/ §' \F
ent

vazg Patt;m Matcb ing Saﬁaiegtes

’ ““tftftfé' “ “*\/\5\5 2’»“«“‘“2
:m A/}%;};a/» PP »»5\5\5/ 9 006 N
22 PRI g9 PRI

/A/@a/& >\A\& a/«/«\/ / /)

/&/& &&Aﬁ\ﬁ\/\\ Ao ‘”}6»}“>A&6::

R R TR A

Ct“t‘“{‘WW&“‘“«"’o%/»}\?t“t“t‘
= &/&/%/%/%a\&aaﬁ . ER t/t‘s%oﬁa“ahah&
M(%%m{& %\@.*{“{x%{&&{x{*{%
fﬁlﬁ/& m“ &\&\& %ﬁm&a‘“a“b“a o‘.«s KL
ALLEL

9661035

Computer Algorithms

String Pattern Matching Strategies

E9661035

Jun-ichi Aoe

University of Tokushima, Japan

IEEE Computer Society Press
Los Alamitos, California

Washington e Brussels e Tokyo

Computer Algorithms: string pattern matching strategies / [edited by]
Jun-ichi Aoe.
A cm.
Includes bibliographical references and index.
ISBN 0-8186-5461-9 (m/f). -- ISBN 0-8186-5462-7 (case). -- ISBN
0-8186-5460-0 (paper)

1. Computer algorithms. I. Aoe, Jun-ichi, 1951-
QA76.9.A43C67 1994
005.1--dc20 93-40355

CIP

IEEE Computer Society Press
10662 Los Vaqueros Circle
P.O. Box 3014
Los Alamitos, CA 90720-1264

Copyright © 1994 by The Institute of Electrical and Electronics Engineers, Inc.
All rights reserved.

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries may
photocopy beyond the limits of US copyright law, for private use of patrons, those articles in this volume
that carry a code at the bottom of the first page, provided that the per-copy fee indicated in the code is paid
through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

Other copying, reprint, or republication requests should be addressed to: IEEE Copyrights Manager, IEEE
Service Center, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331.

IEEE Computer Society Press Order Number 5462-05
IEEE Catalog Number 94EH0389-7
Library of Congress Number 93-40355
ISBN 0-8186-5461-9 (microfiche)
ISBN 0-8186-5462-7 (case)

Additional copies may be ordered from:

IEEE Computer Society Press IEEE Service Center IEEE Computer Society IEEE Computer Society
Customer Service Center 445 Hoes Lane 13, Avenue de I’ Aquilon Ooshima Building
10662 Los Vaqueros Circle P.O. Box 1331 B-1200 Brussels 2-19-1 Minami-Aoyama
P.O. Box 3014 Piscataway, NJ 08855-1331 BELGIUM Minato-ku, Tokyo 107
Los Alamitos, CA 90720-1264 Tel: +1-908-981-1393 Tel: +32-2-770-2198 JAPAN

Tel: +1-714-821-8380 Fax: +1-908-981-9667 Fax: +32-2-770-8505 Tel: +81-3-3408-3118
Fax: +1-714-821-4641 Fax: +81-3-3408-3553

Email: cs.books @computer.org

Technical Editor: Ajit Singh
Editorial production by Bob Werner
Cover art design and production by Alexander Torres
Printed in the United States of America by Braun-Brumfield, Inc.

@ The Institute of Electrical and Electronics Engineers, Inc.

Computer Algorithms

String Pattern Matching Strategies

Preface

String pattern matching is an important component of many areas of science and information
processing. It occurs naturally as part of data processing, text editing, symbol manipulation, term-
rewriting, lexical analysis, code generation, spelling correction, bibliographic search, text retrieval, and
natural language processing. String pattern matching techniques can be also applied to the recognition
of patterns such as shapes, pictures, scenes, and so on. In biology, string pattern matching problems
arise in the analysis of protein sequences and nucleic acids and in the investigation of molecular
phylogeny. String pattern matching is the most time-consuming part of many programs, and the
substitution of a poor matching method by a good one often leads to a substantial increase in speed.
Therefore, a fast methodology should be selected. The aim of this volume is to introduce the basic
concepts and characteristics of string pattern matching strategies and to provide numerous references
for further reading.

The pattern matcher is a program that takes as input the text string x and produces as output the
locations in x at which patterns, or keywords, appear as substrings. The simplest patterns are single
keywords that match themselves. A somewhat broader class of patterns would be sets of keywords.
There are two important variants of pattern-matching problems. One is approximate string matching
problems, in which one must find all substrings in a text that are close to a pattern according to some
measure of closeness. Another is multidimensional matching problems for finding patterns in higher-
dimensional structures such as trees and graphs. In recent years some types of pattern matching
algorithms have been implemented on hardware based on the finite state automata and signature files
in order to improve processing efficiency. In this book, string pattern matching strategies are classified
into the following five chapters.

* Single keyword matching

* Matching sets of keywords

* Approximate string matching
® Multidimensional matching

* Hardware matching

As an introduction to each chapter, my survey article describes the basic concepts of classification
mentioned above. Fifteen papers have been selected to further illustrate these concepts. Also, I have
made considerable efforts to find a large number of corresponding references and to organize them.

Most of the string matching techniques are treated in detail, with mathematical analyses and
suggestions for practical applications, in the books and articles cited throughout the book. The
references [Aho, 80], [Aho, 90], [Apostolico et al., 85], [Gonnet et al., 85], and [Sankoff et al., 83] are
good surveys for general string pattern matching techniques. The six books [Aho et al., 74], [Frakes et
al., 92], [Knuth, 73], [Mehlhorn, 84], [Sedgewick, 86], and [Standish, 80] are useful for the
corresponding basic data structures and algorithms.

ix

IEEE Computer Society Press

Press Activities Board

Vice President: Joseph Boykin, GTE Laboratories
Mario R. Barbacci, Carnegie Mellon University
Jon T. Butler, Naval Postgraduate School
J.T. Cain, University of Pittsburgh
Bill D. Carroll, University of Texas
Doris L. Carver, Louisiana State University
James J. Farrell III, VLSI Technology Inc.
Lansing Hatfield, Lawrence Livermore National Laboratory
Gene F. Hoffnagle, IBM Corporation
Barry W. Johnson, University of Virginia
Duncan H. Lawrie, University of Illinois
Michael C. Mulder, University of S.W. Louisiana
Yale N. Patt, University of Michigan
Murali R. Varanasi, University of South Florida
Ben Wah, University of Illinois
Ronald Waxman, University of Virginia

Editorial Board
Editor-in-Chief: Jon T. Butler, Naval Postgraduate School

Assoc. EIC/Acquisitions: Pradip K. Srimani, Colorado State University

Dharma P. Agrawal, North Carolina State University
Oscar N. Garcia, The George Washington University
Uma G. Gupta, University of Central Florida
A.R. Hurson, Pennsylvania State University
Vijay K. Jain, University of South Florida
Yutaka Kanayama, Naval Postgraduate School
Frederick E. Petry, Tulane University
Dhiraj K. Pradhan, Texas A&M University
Sudha Ram, University of Arizona
David Rine, George Mason University
A R.K. Sastry, Rockwell International Science Center
Abhijit Sengupta, University of South Carolina
Ajit Singh, Siemens Corporate Research
Mukesh Singhal, Ohio State University
Ronald D. Williams, University of Virginia

Press Staff

T. Michael Elliott, Executive Director
True Seaborn, Publisher
Matt Loeb, Assistant Publisher
Catherine Harris, Managing Editor
Mary E. Kavanaugh, Production Editor
Lisa O’Conner, Production Editor
Regina Spencer Sipple, Production Editor
Penny Storms, Production Editor
Edna Straub, Production Editor
Robert Werner, Production Editor
Perri Cline, Electronic Publishing Manager
Frieda Koester, Marketing/Sales Manager
Thomas Fink, Advertising/Promotions Manager

Offices of the IEEE Computer Society

Headquarters Office
1730 Massachusetts Avenue, N.-W.
Washington, DC 20036-1903
Phone: (202) 371-0101 — Fax: (202) 728-9614

Publications Office
P.O. Box 3014
10662 Los Vaqueros Circle
Los Alamitos, CA 90720-1264
Membership and General Information: (714) 821-8380
Publication Orders: (800) 272-6657 — Fax: (714) 821-4010

European Office
13, avenue de I’Aquilon
B-1200 Brussels, BELGIUM
Phone: 32-2-770-21-98 — Fax: 32-3-770-85-05
Asian Office
Ooshima Building
2-19-1 Minami-Aoyama, Minato-ku
Tokyo 107, JAPAN
Phone: 81-3-408-3118 — Fax: 81-3-408-3553

IEEE Computer Society

IEEE Computer Society Press Publications

Monographs: A monograph is an authored book consisting of 100-
percent original material.

Tutorials: A tutorial is a collection of original materials prepared
by the editors and reprints of the best articles published in a subject
area. Tutorials must contain at least five percent of original material
(although we recommend 15 to 20 percent of original material).
Reprint collections: Areprint collection contains reprints (divided
into sections) with a preface, table of contents, and section introduc-
tions discussing the reprints and why they were selected. Collections
contain less than five percent of original material.

Technology series: Each technology series is a brief reprint
collection — approximately 126-136 pages and containing 12 to 13
papers, each paper focusing on a subset of a specific discipline, such
as networks, architecture, software, or robotics.

Submission of proposals: For guidelines on preparing CS Press
books, write the Managing Editor, IEEE Computer Society Press,
PO Box 3014, 10662 Los Vaqueros Circle, Los Alamitos, CA
90720-1264, or telephone (714) 821-8380.

Purpose

The IEEE Computer Society advances the theory and practice of
computer science and engineering, promotes the exchange of tech-
nical information among 100,000 members worldwide, and provides
a wide range of services to members and nonmembers.

Membership

All members receive the acclaimed monthly magazine Computer,
discounts, and opportunities to serve (all activities are led by volunteer
members). Membershipis open to all IEEE members, affiliate society
members, and others seriously interested in the computer field.

Publications and Activities

Computer magazine: An authoritative, easy-to-read magazine
containing tutorials and in-depth articles on topics across the com-
puter field, plus news, conference reports, book reviews, calendars,
calls for papers, interviews, and new products.

Periodicals: The society publishes six magazines and five re-
search transactions. For more details, refer to our membership
application or request information as noted above.

Conference proceedings, tutorial texts, and standards docu-
ments: The IEEE Computer Society Press publishes more than 100
titles every year.

Standards working groups: Over 100 of these groups produce
IEEE standards used throughout the industrial world.

Technical committees: Over 30 TCs publish newsletters, pro-
vide interaction with peers in specialty areas, and directly influence
standards, conferences, and education.

Conferences/Education: The society holds about 100 confer-
ences each year and sponsors many educational activities, including
computing science accreditation.

Chapters: Regular and student chapters worldwide provide the
opportunity to interact with colleagues, hear technical experts, and
serve the local professional community.

Other titles from
IEEE Computer Society Press

Advances in Real-Time Systems
edited by John A. Stankovic and Krithi Ramamritham

Provides an overview of current practices as well as new technologies, and shows how the current state of the art is emerging in an attempt to
handle the next generation of computer systems. Its papers describe the many different performance metrics and task characteristics of
scheduling, three very different real-time operating systems, three complementary approaches to programming real-time systems, and computing
execution times of programs and performance evaluations.

Sections: Introduction, Scheduling, Multiprocessor and Distributed Scheduling, Operating System Kernels, Programming Languages, Design and
Analysis Techniques, Communication, Architecture and Fault Tolerance, Clock Synchronization, Databases, Artificial Intelligence, Bibliography.

800 pages. 1993. Hardcover. ISBN 0-8186-3792-7. Catalog # 3792-01 — $88.00 Members $66.00

Readings in Real-Time Systems
edited by Yann-Hang Lee and C. M. Krishna

Examines real-time computing, discusses its technical problems and solutions, and explores the challenges that will face real-time computing in
the years to come. The tutorial also explores subjects such as distributed real-time architectures, fault-tolerant clock synchronization, algorithms
for scheduling computations, fault-tolerant task assignment, object-oriented real-time systems, and CASE-DB.

Sections: Hard Real-Time Architectures, Real-Time Operating Systems, Real-Time Software, Real-Time Databases, Performance Modeling.

256 pages. 1993. Hardcover. ISBN 0-8186-2997-5. Catalog # 2997-01 — $45.00 Members $36.00

Real-Time Systems
Abstractions, Languages, and Design Methodologies
edited by Krishna M. Kavi

Presents valuable information on new formalisms, high-level programming languages, and CASE tools that increase the effectiveness of real-time
systems. The book examines formalisms based on operational and denotational semantics, and axiomatic logic, surveys languages used in
programming, and investigates languages designed for specific application classes.

Sections: Real-Time Systems: Perspectives, Real-Time Specification and Verification, Real-Time Languages, Design Methodologies for Real-
Time Systems.

672 pages. 1992. Hardcover. ISBN 0-8186-3152-X. Catalog # 3152-01 — $70.00 Members $55.00

Real-Time Systems Design and Analysis:
An Engineer’s Handbook

by Phillip A. Laplante

CO-PUBLISHED WITH IEEE PRESS

Covers all aspects of real-time software design including architecture, operating systems, programming languages, software engineering, and
systems integration. Contains a wide variety of examples, illustrations, and exercises as well as practical tools that the software engineer or
student can apply to the design and implementation of real-time systems.

Sections: Computer Hardware Technologies; Language Issues; Software Life Cycle; Real-Time Specification and Design Techniques; Real-Time
Kernels; Inter-Task Communication and Synchronization; Memory Management; System Performance Analysis and Optimization; Reliability,
Testing, and Fault Tolerance; Multiprocessing Systems; Hardware/Software Integration.

360 pages. 1992. Hardcover. ISBN 0-7803-0402-0. Catalog # 3107-04 — $49.95 Members $40.00

v To order call toll-free: 1-800-CS-BOOKS v
v Fax:(714)821—-4641 v

10662 Los Vaqueros Circle Los Alamitos, CA 90720-1264 Phone: (714) 821—-8380

Preface

Chapter 1: Single keyword matching

Fast Pattern Matching in Strings
D.E. Knuth, J.H. Morris, and V.R. Pratt

from SIAM Journal of Computing, June 1977

A Fast String Searching Algorithm
R.S. Boyer and J.S. Moore

from Communications of the ACM, October 1977

Algorithms for Pattern Matching
G. Davies and S. Bowsher

from Software — Practice and Experience, June 1986

Chapter 2: Matching sets of keywords

Efficient String Matching: An Aid to Bibliographic Search
A.V. Aho and M.]. Corasick

from Communications of the ACM, June 1975

A Method for Improving String Pattern Matching Machines
J. Aoe, Y. Yamamoto, and R. Shimada

from IEEE Trans. on Software Engineering, January 1984

Contents

1X

36

47

73

78

86

An Efficient Algorithm for Matching Multiple Patterns 91
J.-J. Fan and K.-Y. Su

from IEEE Trans. on Knowledge and Data Engineering, April 1993

Chapter 3: Approximate string matching 105

Approximate String Matching 111
P.V. Hall and G.R. Dowling

from ACM Computing Surveys, December 1980

Optimal Correspondence of String Subsequences 133
Y.P. Wang and T. Pavlidis

from IEEE Trans. on Pattern Analysis and Machine Intelligence, Nov. 1990

The Noisy Substring Matching Problem 141
R.L. Kashyap and B.J. Oommen

from IEEE Trans. on Software Engineering, May 1983

Chapter 4: Multidimensional matching 147

Pattern Matching in Trees 154
C.M. Hoffmann and M.]J. O’Donnell

from Journal of the ACM, January 1982

Code Generation Using Tree Matching and Dynamic Programming 182
A.V. Aho, M. Ganapathi, and S.W K. Tjiang

from ACM Trans. on Programming Languages and Systems, Oct. 1989

The Tree-to-Tree Correction Problem 208
K.-C. Tai

from Journal of the ACM, July 1979

Vi

A Technique for Two-Dimensional Pattern Matching
R.F. Zhu and T. Takaoka

from Communications of the ACM, September 1989

Chapter 5: Hardware matching

Performance and Architectural Issues for String Matching
M.E. Isenman and D.E. Shasha

from IEEE Trans. on Computers, February 1990

HYTREM — A Hybrid Text-Retrieval Machine for Large Databases
D.L. Lee and F.H. Lochovsky

from IEEE Trans. on Computers, January 1990
References

About the author

vii

220

231

235

248

261

281

Chapter 1: Single Keyword Matching

Introduction

Single keyword matching means locating all occurrences of a given pattern in the input text string. It
occurs naturally as part of data processing, text editing, text retrieval, and so on. Many text editors
and programming languages have facilities for matching strings. The simplest technique is called the
brute-force (BF), or naive, algorithm. This approach scans the text from left to right and checks the
characters of the pattern character by character against the substring of the text string beneath it. Let
m and n be the lengths of the pattern and the text, respectively. In the BF approach, the longest (worst-
case) time required for determining that the pattern does not occur in the text is O(mn).

Three major pattern matching algorithms for the improvement of efficiency over the BF technique
exist. One of them is the KMP algorithm, developed by Knuth, Morris, and Pratt. The KMP algorithm
scans the text from left to right, using knowledge of the previous characters compared to determine
the next position of the pattern to use. The algorithm first reads the pattern and in O(m) time
constructs a table, called the next function, that determines the number of characters to slide the
pattern to the right in case of a mismatch during the pattern matching process. The expected
theoretical behavior of the KMP algorithm is O(1+m), and the next function takes O(n) space.

The next algorithm, the BM algorithm, was proposed by Boyer and Moore. The BM approach is the
fastest pattern matching algorithm for a single keyword in both theory and practice. The BM
algorithm compares characters in the pattern from right to left. If a mismatch occurs, the algorithm
computes a shift, that is, the amount by which the pattern is moved to the right before a new
matching is attempted. It also preprocesses the pattern in order to produce the shift tables. The
expected theoretical behavior of the BM algorithm is equal to that of the KMP algorithm, but many
experimental results show that the BM algorithm is faster than the KMP algorithm.

The last approach is the KR algorithm, presented by Karp and Rabin. The KR algorithm uses extra
memory to advantage by treating each possible m-character section (where m is the pattern length) of
the text string as a keyword in a standard hash table, computing the hash function of it, and checking
whether it equals the hash function of the pattern. Although the KR algorithm is linear in the number
of references to the text string per characters passed, the substantially higher running time of this
algorithm makes it unfeasible for pattern matching in strings.

In the rest of the chapter, many improvements, including parallel approaches, and variants of the
basic single keyword matching algorithms introduced above are discussed along with the corre-
sponding references.

In order to introduce these typical single keyword matching techniques, I have selected the three
papers Knuth, Morris, and Pratt (1977), Boyer and Moore (1977), and Davies and Bowsher (1986). The
first two papers are the original papers of the KMP and BM algorithms, respectively. The third paper
includes comprehensive descriptions and useful empirical evaluation of the BF, KMP, BM, and KR
algorithms. Good surveys of single keyword matching are in [Baeza-Yates, 89al, [Baeza-Yates, 92], and
[Pirkldauer, 92].

Brute-force (BF) algorithm

This approach scans the text from left to right and checks the characters of the pattern character by
character against the substring of the text string beneath it. When a mismatch occurs, the pattern is
shifted to the right one character. Consider the following example.

Pattern: text
Text: In this example the algorithm searches in the text ...

In this example the algorithm searches in the text for the first character of the pattern (indicated by
underline). It continues for every character of the pattern, abandoning the search as soon as a
mismatch occurs; this happens if an initial substring of the pattern occurs in the text and is known as a
false start. It is not difficult to see that the worst-case execution time occurs if, for every possible
starting position of the pattern in the text, all but the last character of the pattern matches the
corresponding character in the text. For pattern a”-'b and for text a” with n>>m, O(mn) comparisons
are needed to determine that the pattern does not occur in the text.

Knuth-Morris-Pratt (KMP) algorithm

The KMP algorithm scans the text from left to right, using knowledge of the previous characters
compared, to determine the next position of the pattern to use. The algorithm first reads the pattern
and in O(m) time constructs a table, called the next function, that determines how many characters to

slide the pattern to the right in case of a mismatch during the pattern matching process. Consider the
following example.

Position: 1 2 3 4 5

Pattern: a b a
next: 0 1 0 2 2

By using this next function, the text scanning is as follows:

Pattern:

Text: a b a a a

7 8 9 10 11

—_ o
NT T o
W W
N o I
g o o O

Let 7 and j be the current positions for the pattern and the text, respectively. In the position j=4,
which is a b in the text, matching becomes unsuccessful in the same position, i=4, which is an 4 in the
pattern. By adjusting i=next[4]=2 to j=4, the pattern is shifted 2 characters to the right as follows:

Pattern:

Text: a b a a a
2

9 10 11

WO g -
oo N
G » W
N oo B
®Igt v 9O

After aa is matched, a mismatch is detected in the comparison of a in the pattern with b in the text.

Then, the pattern is shifted 3 characters to the right by adjusting i=next[5]=2 to j=8, and then the
algorithm finds a successful match as follows:

i P 2 3 4 5

Pattern: a b a a a
Text: a b a b a a b a a a
]’ 1 2 3 4 5 7 8 9 10 11

Summarizing, the expected theoretical behavior of the KMP algorithm is O(n+m), and takes O(1)
space for the next function. Note that the running time of the KMP algorithm is independent of the
size of the alphabet.

Variants that compute the next function are presented by [Bailey et al., 801, [Barth, 81], and
[Takaoka, 86]. Barth ([Barth, 84] and [Barth, 85]) has used Markov-chain theory to derive analytical
results on the expected number of character comparisons made by the BF and KMP algorithms on
random strings.

Boyer and Moore (BM) algorithm

The BM approach is the fastest pattern matching algorithm for a single keyword in both theory and
practice. In the KMP algorithm the pattern is scanned from left to right, but the BM algorithm
compares characters in the pattern from right to left. If mismatch occurs, then the algorithm computes
a shift; that is, it computes the amount by which the pattern is moved to the right before a new
matching attempt is undertaken. The shift can be computed using two heuristics. The match heuristic
is based on the idea that when the pattern is moved to the right, it has to match over all the characters
previously matched and bring a different character over the character of the text that caused the
mismatch. The occurrence heuristic uses the fact that we must bring over the character of the text that
caused the mismatch the first character of the pattern that matches it. Consider the following example
of [Boyer et al., 77].

Pattern: AT- THAT

Text: WHI CH- FINALLY - HALTS. - -AT- THAT-POINT

At the start, comparing the seventh character, F, of the text with the last character, T, fails. Since F is
known not to appear anywhere in the pattern, the text pointer can be automatically incremented by 7.

Pattern: AT- THAT
Text: WHI CH- FINALLY-HALTS. - -AT-THAT-POINT

The next comparison is of the hyphen in the text with the rightmost character in the pattern, T. They

mismatch, and the pattern includes a hyphen, so the pattern can be moved down 4 positions to align
the two hyphens.

Pattern: AT- THAT

Text: WHI CH- FINALLY-HALTS .- -AT-THAT-POINT

After T is matched, comparing A in the pattern with L in the text fails. The text pointer can be moved
to the right by 7 positions, since the character causing the mismatch, L, does not occur anywhere in the
pattern.

Pattern: AT- THAT

Text: WHI CH- FINALLY-HALTS. - -AT-THAT-POINT

After AT is matched, a mismatch is detected in the comparison of H in the pattern with the hyphen in
the text. The text pointer can be moved to the right by 7 places, so as to align the discovered substring
AT with the beginning of the pattern.

Pattern: AT- THAT

Text: WHI CH- FINALLY-HALTS. - -AT- THAT-POINT

Karp and Rabin (KR) algorithm

An algorithm developed in [Karp et al., 87] is an improvement of the brute-force approach to
pattern matching. This algorithm is a probabilistic algorithm that adapts hashing techniques to string
searching. It uses extra memory to advantage by treating each possible m-character section of the text
string (where m is the pattern length) as a key in a standard hash table, computing the hash function
of it, and checking whether it equals the hash function of the pattern. Similar approaches using
signature files will be discussed in chapter 5.

Here the hash function is defined as follows:
h(k) = k mod g, where g is a large prime number.

A large value of g makes it unlikely that a collision will occur. We translate the m-character into
numbers by packing them together in a computer word, which we then treat as the integer k in the
function above. This corresponds to writing the characters as numbers in a radix d number system,
where d is the number of possible characters. The number k corresponding to the m-character section
text[i]... text[i+m-1] is

k = textli] x d™ 1+ text[i+1] x d™2 + - + text[i+m—1]
Shifting one position to the right in the text string simply corresponds to replacing k by
(k—text[i] x d™ 1) x d+text[i+m]
Consider the example shown in Figure 1 of the KR algorithm based on [Cormen et al., 90]. Each
character is a decimal digit, and the hashed value in computed by modulo 11. In Figure 1a the same
text string with values computed modulo 11 for each possible position of a section of length 6.

Assuming the pattern k=163479, we look for sections whose value modulo 11 is 8, since h(k)=163479
mod 11=8. Two such sections for 163479 and 123912 are found. The first, beginning at text position 8,

is indeed an occurrence of the pattern, and the second, beginning at text position 14, is spurious. In
Figure 1b we are computing the value for a section in constant time, given the value for the previous
section. The first section has value 163479. Dropping the high-order digit 1 gives us the new value
634791. All computations are performed modulo 11, so the value of the first section is 8 and the value
computed of the new section is 3.

1
text 9

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
325|116 |3|4|79]|1]|2|3|9[1]2]7]3

N - 1 -1 -

hash(k)=k mod11 [8 100 |6 3|9 |7 (8|3 |a |7 |9 |7 |8 |9 |3

1 !

2 3 4
2 10 |5

valid spurious
match hit
(@)
_old new
high-order low-order
old new digit digit
high-order low-order
digit shift dlglt x \
\ \ 116 (347191
1634791 = (163479-1100000) * 10+1(mod 11) X Y
=(8-1¢10)*10+1(mod 11) I
= 3(mod 11) 4
8 3
(b)

Figure 1. Illustrations of the KR algorithm

Evaluations of single keyword matching algorithms

Rivest ([Rivest, 77]) has shown that any algorithm for finding a keyword in a string must examine
at least n—m+1 of the characters in the string in the worst case, and Yao ([Yao, 79]) has shown that the
minimum average number of characters needed to be examined in looking for a pattern in a random
text string is O(n[log,m1/m) for n>2m, where A is the alphabet size. The upper bound and lower
bound time complexities of single pattern matching are discussed in [Galil et al., 91] and [Galil et al,,
92].

The minimum number of character comparisons needed to determine all occurrences of a keyword
is an interesting theoretical question. It has been considered by [Galil, 79] and [Guibas et al., 80], and

they have discussed some improvements to the BM algorithm for its worst-case behavior. Apostolico
et al. ([Apostolico et al., 84] and [Apostolico et al., 86]) have presented a variant of the BM algorithm
in which the number of character comparisons is at most 21, regardless of the number of occurrences
of the pattern in the string. Sunday ([Sunday, 90]) has devised string matching methods that are
generally faster than the BM algorithm. His faster method uses statistics of the language being
scanned to determine the order in which character pairs are to be compared. In the paper [Smith, 91]
the peformances of similar, language-independent algorithms are examined. Results comparable with
those of language-based algorithms can be achieved with an adaptive technique. In terms of character
comparisons, a faster algorithm than Sunday’s is constructed by using the larger of two pattern shifts.
Evaluating the theoretical time complexity of the BF, KMP, and BM algorithms, based on empirical
data presented, Smit ([Smit, 82]) has shown that, in a general text editor operating on lines of text, the
best solution is to use the BM algorithm for patterns longer than three characters and the BF algorithm
in the other cases. The KMP algorithm may perform significantly better than the BF algorithm when
comparing strings from a small alphabet, for example, binary strings. Some experiments in a
distributed environment are presented in [Moller et al., 84]. Considering the length of patterns, the
number of alphabets, and the uniformity of texts, there is a trade-off between time (on the average)
and space in the original BM algorithm. Thus, the original algorithm has been analyzed extensively,
and several variants of it have been introduced. An average-case analysis of the KR method is
discussed in [Gonnet et al., 90]. Other theoretical and experimental considerations for single keyword
matching are in [Arikawa, 81], [Collussi et al., 90], [Li, 84], [Liu, 81], [Miller et al., 88], [Slisenko, 80],
[Waterman, 84], and [Zhu et al., 87]. Preprocessing and string matching techniques for a given text
and pattern are discussed in [Naor, 91].

For incorrect preprocessing of the pattern based on the KMP algorithm, a corrected version can be
found in [Rytter, 80]. For m being similar to 1, Iyenger et al. ([Iyenger et al., 80]) have given a variant
of the BM algorithm. A combination of the KMP and BM algorithms is presented in [Semba, 85], and
the worst cost is proportional to 2#.

Horspool ([Horspool, 80]) has presented a simplification of the BM algorithm, and based on
empirical results has shown that this simpler version is as good as the original one. The simplified
version is obtained by using only the match heuristic. The main reason behind this simplification is
that, in practice, the occurrence table does not make much contribution to the overall speed. The only
purpose of this table is to optimize the handling of repetitive patterns (such as xabcyyabc) and so to
avoid the worst-case running time, O(mn). Since repetitive patterns are not common, it is not
worthwhile to expend the considerable effort needed to set up the table. With this, the space depends
only on the size of the alphabet (almost always fixed) and not on the length of the pattern (variable).

Baeza-Yates ([Baeza-Yates, 89b]) has improved the average time of the BM algorithm using extra
space. This improvement is accomplished by applying a transformation that practically increases the
size of the alphabet in use. The improvement is such that for long patterns an algorithm more than 50
percent faster than the original can be obtained. In this paper different heuristics are discussed that
improve the search time based on the probability distribution of the symbols in the alphabet used.
Schaback ([Schaback, 88]) has also analyzed the expected performance of some variants of the BM
algorithm.

Horspool’s implementation performs extremely well when we search for a random pattern in a
random text. In practice, however, neither the pattern nor the text is random; there exist strong
dependencies between successive symbols. Raita ([Raita, 92]) has suggested that it is not profitable to
compare the pattern symbols strictly from right to left; if the last symbol of the pattern matches the
corresponding text symbol, we should next try to match the first pattern symbol, because the
dependencies are weakest between these two. His resulting code runs 25 percent faster than the best
currently known routine.

Davies et al. ([Davies et al., 86]) have described four algorithms (BF, KMP, BM, and KR) of varying
complexity used for pattern matching; and have investigated their behavior. Concluding from the

empirical evidence, the KMP algorithm should be used with a binary alphabet or with small patterns
drawn from any other alphabet. The BM algorithm should be used in all other cases. Use of the BM
algorithm may not be advisable, however, if the frequency at which the pattern is expected to be
found is small, since the preprocessing time is in that case significant; similarly with the KMP
algorithm, so the BF algorithm is better in that situation. Although the KR algorithm is linear in the
number of references to the text string per characters passed, its substantially higher running time
makes it unfeasible for pattern matching in strings. The advantage of this algorithm over the other
three lies in its extension to two-dimensional pattern matching. It can be used for pattern recognition
and image processing and thus in the expanding field of computer graphics. The extension will be
discussed in Section 4.

Related problems

Cook ([Cook, 71]) has shown that a linear-time pattern matching algorithm exists for any set of
strings that can be recognized by a two-way deterministic push-down automaton (2DPDA), even
though the 2DPDA may spend more than linear time recognizing the set of strings. The string
matching capabilities of other classes of automata, especially k-head finite automata, have been of
theoretical interest to [Apostolico et al., 85], [Chrobak et al., 871, [Galil et al., 83], and [Li et al., 86].

Schemes in [Bean et al., 85], [Crochemore et al., 91], [Duval, 83], [Guibas et al., 81a], [Guibas et al.,
81b], and [Lyndon et al., 62] have added new vigor to the study of periods and overlaps in strings and
to the study of the combinatorics of patterns in strings. [Crochemore et al., 91] presents a new
algorithm that can be viewed as an intermediate between the standard algorithms of the KMP and the
BM. The algorithm is linear in time and uses constant space like the algorithm of [Galil et al., 83]. The
algorithm relies on a previously known result in combinatorics on words, the critical factorization
theorem, which relates the global period of a word to its local repetitions of blocks. The following
results are presented in [Crochemore et al., 91].

1. It is linear in time O(n+m), as KMP and BM, with a maximum number of letter comparisons
bounded by 2n+5m compared to 2n+2m for KMP and 2n+f(m) for BM, where f depends on the version
of their algorithm.

2. The minimum number of letter comparisons used during the search phase (executing the
preprocessing of the pattern) is 21/m compared to n for KMP and #n/m for BM.

3. The memory space used, additional to the locations of the text and the pattern, is constant
instead of O(m) for both KMP and BM.

Parallel approaches of string matching are discussed in [Galil, 85], and an O(log log n) time parallel
algorithm improving Galil’s method is presented in [Breslauer et al., 90]. The paper [Breslauer et al.,
92] describes the parallel complexity of the string matching problem using p processors for general
alphabets. The other parallel matching algorithms are discussed in [Barkman et al., 89], [Kedam et al.,
89], and [Viskin, 85].

