LNCS 4409

José Luiz Fiadeiro
Pierre-Yves Schobbens (Eds.)

Recent Trends
in Algebraic
Development Techniques

18th International Workshop, WADT 2006
La Roche en Ardenne, Belgium, June 2006
Revised Selected Papers

) Springer

José Luiz Fiadeiro
Pierre-Yves Schobbens (Eds.)

Recent Trends
in Algebraic
Development Techniques

18th International Workshop, WADT 2006
La Roche en Ardenne, Belgium, June 1-3, 2006
Revised Selected Papers

@ Springer

Volume Editors

José Luiz Fiadeiro

University of Leicester

Department of Computer Science
University Road, Leicester LE1 7RH, UK
E-mail: jose @mcs.le.ac.uk

Pierre-Yves Schobbens

Facultés Universitaires Notre-Dame de la Paix
Institut d’Informatique

Rue Grandgagnage 21, 5000 Namur, Belgium
E-mail: pys@info.fundp.ac.be

Library of Congress Control Number: 2007924494

CR Subject Classification (1998): F.3.1, F4,D.2.1, I.1
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-71997-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-71997-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12049424 06/3180 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany

Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4409

Preface

This volume contains selected papers from WADT 2006, the 18th International
Workshop on Algebraic Development Techniques. Like its predecessors, WADT
2006 focussed on the algebraic approach to the specification and development
of systems, an area that was born around the algebraic specification of abstract
data types and encompasses today the formal design of software systems, new
specification frameworks and a wide range of application areas.

WADT 2006 took place at Chateau Floréal, La-Roche-en-Ardenne, Belgium,
June 1-3, 2006, and was organized by Pierre-Yves Schobbens.

The program consisted of invited talks by David Rosenblum (University Col-
lege London, UK) and Hubert Comon-Lundh (ENS-Cachan, France), and 32
presentations describing ongoing research on main topics of the workshop: formal
methods for system development, specification languages and methods, systems
and techniques for reasoning about specifications, specification development sys-
tems, methods and techniques for concurrent, distributed and mobile systems,
and algebraic and co-algebraic foundations.

The Steering Committee of WADT, consisting of Michel Bidoit, José
Fiadeiro, Hans-Jorg Kreowski, Till Mossakowski, Peter Mosses, Fernando
Orejas, Francesco Parisi-Presicce, and Andrzej Tarlecki, with the additional
help of Pierre-Yves Schobbens and Martin Wirsing, selected several presenta-
tions and invited their authors to submit a full paper for possible inclusion in
this volume. All submissions underwent a careful refereeing process. We are ex-
tremely grateful to the following additional referees for their help in reviewing the
submissions: A. Borzyszkowski, F. Gadducci, G. Godoy, K. Holscher, A. Kurz,
S. Kuske, A. Lopes, W. Pawlowski, H. Reichel, U. Schmid, L. Schroder,
M. Sebag, and H. Wiklicky.

This volume contains the final versions of the ten contributions that were
accepted.

The workshop was jointly organized with IFIP WG 1.3 (Foundations of Sys-
tem Specification), and received generous sponsorship from the University of
Namur (Facultés Universitaires Notre-Dame de la Paix).

January 2007 José Fiadeiro
Pierre-Yves Schobbens

Lecture Notes in Computer Science

For information about Vols. 1-4352

please contact your bookseller or Springer

Vol. 4453: T. Speed, H. Huang (Eds.), Research in Com-
putational Molecular Biology. XVI, 550 pages. 2007.
(Sublibrary LNBI).

Vol. 4450: T. Okamoto, X. Wang (Eds.), Public Key
Cryptography — PKC 2007. XIII, 491 pages. 2007.

Vol. 4448: M. Giacobini (Ed.), Applications of Evolu-
tionary Computing. XXIII, 755 pages. 2007.

Vol. 4447: E. Marchiori, J.H. Moore, J.C. Rajapakse
(Eds.), Evolutionary Computation,Machine Learning
and Data Mining in Bioinformatics. XI, 302 pages. 2007.

Vol. 4446: C. Cotta, J. van Hemert (Eds.), Evolutionary
Computation in Combinatorial Optimization. XII, 241
pages. 2007.

Vol. 4445: M. Ebner, M. O’Neill, A. Ekdrt, L. Vanneschi,
AL Esparcia-Alcézar (Eds.), Genetic Programming. XI,
382 pages. 2007.

Vol. 4444: T. Reps, M. Sagiv, J. Bauer (Eds.), Program
Analysis and Compilation, Theory and Practice. X, 361
pages. 2007.

Vol. 4443: R. Kotagiri, P.R. Krishna, M. Mohania, E.
Nantajeewarawat (Eds.), Advances in Databases: Con-
cepts, Systems and Applications. XXI, 1126 pages. 2007.

Vol. 4440: B. Liblit, Cooperative Bug Isolation. XV, 101
pages. 2007.

Vol. 4433: E. Sahin, W.M. Spears, A.E.T. Winfield (Eds.),
Swarm Robotics. XII, 221 pages. 2007.

Vol. 4432: B. Beliczynski, A. Dzielinski, M. Iwanowski,
B. Ribeiro (Eds.), Adaptive and Natural Computing Al-
gorithms, Part II. XX VI, 761 pages. 2007.

Vol. 4431: B. Beliczynski, A. Dzielinski, M. Iwanowski,
B. Ribeiro (Eds.), Adaptive and Natural Computing Al-
gorithms, Part I. XXV, 851 pages. 2007.

Vol. 4430: C.C. Yang, D. Zeng, M. Chau, K. Chang, Q.
Yang, X. Cheng, J. Wang, F.-Y. Wang, H. Chen (Eds.),
Intelligence and Security Informatics. XII, 330 pages.
2007.

Vol. 4429: R. Lu, J.H. Siekmann, C. Ullrich (Eds.), Cog-
nitive Systems. X, 161 pages. 2007. (Sublibrary LNAI).

Vol. 4427: S. Uhlig, K. Papagiannaki, O. Bonaventure
(Eds.), Passive and Active Network Measurement. XI,
274 pages. 2007.

Vol. 4426: Z.-H. Zhou, H. Li, Q. Yang (Eds.), Advances

in Knowledge Discovery and Data Mining. XXV, 1161
pages. 2007. (Sublibrary LNAI).

Vol. 4425: G. Amati, C. Carpineto, G. Romano (Eds.),
Advances in Information Retrieval. XIX, 759 pages.
2007.

Vol. 4424: O. Grumberg, M. Huth (Eds.), Tools and Al-
gorithms for the Construction and Analysis of Systems.
XX, 738 pages. 2007.

Vol. 4423: H. Seidl (Ed.), Foundations of Software Sci-
ence and Computational Structures. XVI, 379 pages.
2007.

Vol. 4422: M.B. Dwyer, A. Lopes (Eds.), Fundamental
Approaches to Software Engineering. XV, 440 pages.
2007.

Vol. 4421: R. De Nicola (Ed.), Programming Languages
and Systems. XVII, 538 pages. 2007.

Vol. 4420: S. Krishnamurthi, M. Odersky (Eds.), Com-
piler Construction. XIV, 233 pages. 2007.

Vol. 4419: P.C. Diniz, E. Marques, K. Bertels, M.M.
Fernandes, J.M.P. Cardoso (Eds.), Reconfigurable Com-
puting: Architectures, Tools and Applications. XIV, 391
pages. 2007.

Vol. 4418: A. Gagalowicz, W. Philips (Eds.), Computer
Vision/Computer Graphics Collaboration Techniques.
XYV, 620 pages. 2007.

Vol. 4416: A. Bemporad, A. Bicchi, G. Buttazzo (Eds.),
Hybrid Systems: Computation and Control. XVII, 797
pages. 2007.

Vol. 4415: P. Lukowicz, L. Thiele, G. Troster (Eds.), Ar-
chitecture of Computing Systems - ARCS 2007. X, 297
pages. 2007.

Vol. 4414: S. Hochreiter, R. Wagner (Eds.), Bioinformat-
ics Research and Development. XVI, 482 pages. 2007.
(Sublibrary LNBI).

Vol. 4412: F. Stajano, H.J. Kim, J.-S. Chae, S.-D. Kim
(Eds.), Ubiquitous Convergence Technology. XI, 302
pages. 2007.

Vol. 4411: R.H. Bordini, M. Dastani, J. Dix, AEFE
Seghrouchni (Eds.), Programming Multi-Agent Sys-
tems. XIV, 249 pages. 2007. (Sublibrary LNAI).

Vol. 4410: A. Branco (Ed.), Anaphora: Analysis, Algo-
rithms and Applications. X, 191 pages. 2007. (Sublibrary
LNAI).

Vol. 4409: J.L. Fiadeiro, P.-Y. Schobbens (Eds.), Recent
Trends in Algebraic Development Techniques. VII, 171
pages. 2007.

Vol. 4407: G. Puebla (Ed.), Logic-Based Program Syn-
thesis and Transformation. VIII, 237 pages. 2007.

Vol. 4406: W. De Meuter (Ed.), Advance in Smaltalk.
VII, 157 pages. 2007.

Vol. 4405: L. Padgham, F. Zambonelli (Eds.), Agent-
Oriented Software Engineering VII. XII, 225 pages.
2007.

Vol.4403: S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, T.
Murata (Eds.), Evolutionary Multi-Criterion Optimiza-
tion. XIX, 954 pages. 2007.

Vol. 4401: N. Guelfi, D. Buchs (Eds.), Rapid Integra-
tion of Software Engineering Techniques. IX, 177 pages.
2007.

Vol. 4400: J.F. Peters, A. Skowron, V.W. Marek, E.
Ortowska, R. Stowiriski, W. Ziarko (Eds.), Transactions
on Rough Sets VII, Part II. X, 381 pages. 2007.

Vol. 4399: T. Kovacs, X. Llora, K. Takadama, P.L. Lanzi,
W. Stolzmann, S.W. Wilson (Eds.), Learning Classifier
Systems. XTI, 345 pages. 2007. (Sublibrary LNAI).

Vol. 4398: S. Marchand-Maillet, E. Bruno, A. Niirn-
berger, M. Detyniecki (Eds.), Adaptive Multimedia Re-
trieval: User, Context, and Feedback. XI, 269 pages.
2007.

Vol. 4397: C. Stephanidis, M. Pieper (Eds.), Universal
Access in Ambient Intelligence Environments. XV, 467
pages. 2007.

Vol. 4396: J. Garcia-Vidal, L. Cerda-Alabern (Eds.),
Wireless Systems and Mobility in Next Generation In-
ternet. IX, 271 pages. 2007.

Vol. 4395: M. Daydé, JM.LM. Palma, AL.G.A.
Coutinho, E. Pacitti, J.C. Lopes (Eds.), High Perfor-
mance Computing for Computational Science - VEC-
PAR 2006. XXIV, 721 pages. 2007.

Vol. 4394: A. Gelbukh (Ed.), Computational Linguistics
and Intelligent Text Processing. X VI, 648 pages. 2007.

Vol. 4393: W. Thomas, P. Weil (Eds) STACS 2007.
XVIII, 708 pages. 2007.

Vol. 4392: S.P. Vadhan (Ed.), Theory of Cryptography.
XI, 595 pages. 2007.

Vol. 4391: Y. Stylianou, M. Faundez-Zanuy, A. Esposito
(Eds.), Progress in Nonlinear Speech Processing. XII,
269 pages. 2007.

Vol. 4390: S.O. Kuznetsov, S. Schmidt (Eds.), For-
mal Concept Analysis. X, 329 pages. 2007. (Sublibrary
LNAID).

Vol. 4389: D. Weyns, H.V.D. Parunak, F. Michel (Eds.),
Environments for Multi-Agent Systems III. X, 273
pages. 2007. (Sublibrary LNAI).

Vol. 4385: K. Coninx, K. Luyten, K.A. Schneider (Eds.),
Task Models and Diagrams for Users Interface Design.
X1, 355 pages. 2007.

Vol. 4384: T. Washio, K. Satoh, H. Takeda, A. Inokuchi
(Eds.), New Frontiers in Artificial Intelligence. IX, 401
pages. 2007. (Sublibrary LNAI).

Vol. 4383: E. Bin, A. Ziv, S. Ur (Eds.), Hardware and
Software, Verification and Testing. XII, 235 pages. 2007.

Vol. 4381: J. Akiyama, W.Y.C. Chen, M. Kano, X. Li, Q.
Yu (Eds.), Discrete Geometry, Combinatorics and Graph
Theory. XI, 289 pages. 2007.

Vol. 4380: S. Spaccapietra, P. Atzeni, F. Fages, M.-S.
Hacid, M. Kifer, J. Mylopoulos, B. Pernici, P. Shvaiko, J.
Trujillo, I. Zaihrayeu (Eds.), Journal on Data Semantics
VIII. XV, 219 pages. 2007.

Vol.4379: M. Siidholt, C. Consel (Eds.), Object-Oriented
Technology. VIII, 157 pages. 2007.

Vol. 4378: 1. Virbitskaite, A. Voronkov (Eds.), Perspec-
tives of Systems Informatics. XIV, 496 pages. 2007.

Vol.4377: M. Abe (Ed.), Topics in Cryptology —CT-RSA
2007. X1, 403 pages. 2006.

Vol. 4376: E. Frachtenberg, U. Schwiegelshohn (Eds.),
Job Scheduling Strategies for Parallel Processing. VII,
257 pages. 2007.

Vol. 4374: J.E. Peters, A. Skowron, I. Diintsch, J.
Grzymata-Busse, E. Ortowska, L. Polkowski (Eds.),
Transactions on Rough Sets VI, Part I. XII, 499 pages.
2007.

Vol. 4373: K. Langendoen, T. Voigt (Eds.), Wireless Sen-
sor Networks. X111, 358 pages. 2007.

Vol. 4372: M. Kaufmann, D. Wagner (Eds.), Graph-
Drawing. XIV, 454 pages. 2007.

Vol. 4371: K. Inoue, K. Satoh, F. Toni (Eds.), Compu-
tational Logic in Multi-Agent Systems. X, 315 pages.
2007. (Sublibrary LNAI).

Vol. 4370: P.P Lévy, B. Le Grand, F. Poulet, M. Soto,
L. Darago, L. Toubiana, J.-F. Vibert (Eds.), Pixelization
Paradigm. XV, 279 pages. 2007.

Vol. 4369: M. Umeda, A. Wolf, O. Bartenstein, U. Geske,
D. Seipel, O. Takata (Eds.), Declarative Programming
for Knowledge Management. X, 229 pages. 2006. (Sub-
library LNAI).

Vol. 4368: T. Erlebach, C. Kaklamanis (Eds.), Approxi-
mation and Online Algorithms. X, 345 pages. 2007.

Vol. 4367: K. De Bosschere, D. Kaeli, P. Stenstrém, D.
Whalley, T. Ungerer (Eds.), High Performance Embed-
ded Architectures and Compilers. XI, 307 pages. 2007.

Vol. 4366: K. Tuyls, R. Westra, Y. Saeys, A. Nowé
(Eds.), Knowledge Discovery and Emergent Complex-
ity in Bioinformatics. IX, 183 pages. 2007. (Sublibrary
LNBI).

Vol. 4364: T. Kiihne (Ed.), Models in Software Engineer-
ing. XI, 332 pages. 2007.

Vol. 4362: J. van Leeuwen, G.F. Italiano, W. van der
Hoek, C. Meinel, H. Sack, F. Pl4§il (Eds.), SOFSEM
2007: Theory and Practice of Computer Science. XXI,
937 pages. 2007.

Vol. 4361: H.J. Hoogeboom, G. P4un, G. Rozenberg, A
Salomaa (Eds.), Membrane Computing. IX, 555 pages.
2006.

Vol. 4360: W. Dubitzky, A. Schuster, PM.A. Sloot,
M. Schroeder, M. Romberg (Eds.), Distributed, High-
Performance and Grid Computing in Computational Bi-
ology. X, 192 pages. 2007. (Sublibrary LNBI).

Vol. 4358: R. Vidal, A. Heyden, Y. Ma (Eds.), Dynamical
Vision. IX, 329 pages. 2007.

Vol. 4357: L. Butty4n, V. Gligor, D. Westhoff (Eds.),
Security and Privacy in Ad-Hoc and Sensor Networks.
X, 193 pages. 2006.

Vol. 4355: J. Julliand, O. Kouchnarenko (Eds.), B 2007:
Formal Specification and Development in B. XIII, 293
pages. 2006.

Vol. 4354: M. Hanus (Ed.), Practical Aspects of Declar-
ative Languages. X, 335 pages. 2006.

Vol.4353: T. Schwentick, D. Suciu (Eds.), Database The-
ory — ICDT 2007. XI, 419 pages. 2006.

Table of Contents

Contributed Papers

A Temporal Graph Logic for Verification of Graph Transformation

SYSUEIMS . . ottt 1
Paolo Baldan, Andrea Corradini, Barbara Kénig, and
Alberto Lluch Lafuente

On the Algebraization of Many-Sorted Logics. 21
Carlos Caleiro and Ricardo Gongalves

Algebraic Semantics of Service Component Modules 37
José Luiz Fiadeiro, Antonia Lopes, and Laura Bocchi

Autonomous Units and Their Semantics - The Parallel Case 56
Hans-Jorg Kreowski and Sabine Kuske

Reasoning Support for CASL with Automated Theorem Proving
SysteIns «s:ms srsms soi5s pusneimife io a5 $8 15 Faino s ao s SRamE $E s 74
Klaus Liittich and Till Mossakowski

Structured CSP — A Process Algebra as an Institution 92
Till Mossakowski and Markus Roggenbach

Incremental Resolution of Model Inconsistencies 111
Tom Mens and Ragnhild Van Der Straeten

Coalgebraic Modal Logic in COCASLo, 127
Lutz Schroder and Till Mossakowski

SViL: System Verification Through Logic Tool Support for Verifying
Sliced Hierarchical Statecharts 142
Sara Van Langenhove and Albert Hoogewijs

A (Co)Algebraic Analysis of Synchronizationin CSP 156
Uwe Wolter

Author Index e 171

A Temporal Graph Logic for Verification
of Graph Transformation Systems*

Paolo Baldan®, Andrea Corradini?, Barbara Koénig?,
and Alberto Lluch Lafuente?

! Dipartimento di Matematica Pura e Applicata, Universita di Padova
baldan@math.unipd.it
2 Dipartimento di Informatica, Universita di Pisa
{andrea,lafuente}@di.unipi.it
3 Abt. fiir Informatik und Ang. Kognitionswissenschaft, Universitit Duisburg-Essen
barbara_koenig@uni-due.de

Abstract. We extend our approach for verifying properties of graph
transformation systems using suitable abstractions. In the original ap-
proach properties are specified as formulae of a propositional temporal
logic whose atomic predicates are monadic second-order graph formulae.
We generalize this aspect by considering more expressive logics, where
edge quantifiers and temporal modalities can be interleaved, a feature
which allows, e.g., to trace the history of objects in time. After char-
acterizing fragments of the logic which can be safely checked on the
approximations, we show how the verification of the logic over graph
transformation systems can be reduced to the verification of a logic over
suitably defined Petri nets.

1 Introduction

Graph Transformation Systems (GTSs) are suitable modeling formalisms for
systems involving aspects such as object-orientation, concurrency, mobility and
distribution. The use of GTSs for the verification and analysis of such systems
is still at an early stage, but there have been several proposals recently, either
using existing model-checking tools [10,25] or developing new techniques [20,21].
A recent line of research [1,2,3,4,5] takes the latter approach and proposes a
method inspired by abstract interpretation techniques. Roughly speaking, a GTS
R, whose state space might be infinite, is approximated by a finite structure
C(R), called covering of R. The covering is a Petri net-like structure, called Petri
graph, and it approximates R in the sense that any graph G reachable in R has
an homomorphic image reachable in C(R). In a sense, this reduces the verification
of GTSs to the verification of Petri nets. One central feature of this approach is

* Research partially supported by the EU IST-2004-16004 SENSORIA, the MIUR
PRIN 2005015824 ART, the DFG project SANDS and CRUI/DAAD VIGONI
“Models based on Graph Transformation Systems: Analysis and Verification”.

J.L. Fiadeiro and P.-Y. Schobbens (Eds.): WADT 2006, LNCS 4409, pp. 1-20, 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 P. Baldan et al.

the fact that it is a partial order reduction technique using unfoldings. That is,
the interleaving of concurrent events—leading to state explosion—is avoided if
possible.

In [5] a logic for the approximation approach is introduced, which is basi-
cally a propositional p-calculus whose atomic predicates are closed formulae in a
monadic second-order logic for graphs. Also, fragments of the logic are identified
which are reflected by the approximations, i.e., classes of formulae which, when
satisfied by the approximation, are satisfied by the original system as well. For
the verification of such formulae, the logic is encoded into a p-calculus whose
atomic predicates are formulae over markings of a Petri net, allowing the reuse
of existing model checking techniques for Petri nets [12].

There are other related papers working with graph logics, for instance [14].
However, most of them are based, like [5], on propositional temporal logics, that
is, logics that do not allow to interleave temporal modalities with graph-related
ones. Thus, properties like a certain edge is never removed are neither expressible
nor verifiable. The only exceptions we are aware of are [20,22].

In this paper we extend the approach of [5] by considering a more expres-
sive logic that allows to interleave temporal and graphical aspects. As we shall
see, our temporal graph logic combines a monadic-second order logic of graphs
with the p-calculus. Formulae of our logic are interpreted over graph transition
systems (GTrS), inspired by algebra transition systems [15] and the formalism
of [20], which are traditional transition systems together with a function map-
ping states into graphs and transitions into partial graph morphisms. Graph
transition systems are suitable formalisms for modeling the state space of graph
transformation systems and Petri graphs. We introduce a notion of approxima-
tion for GTrSs, identifying fragments of the logic whose formulae are preserved or
reflected by approximations. Then we show that the GTrS of the covering, as de-
fined in [1], is an approximation of the GTrS of the original graph transformation
system, thus providing a concrete way of constructing approximations. Finally,
we propose an encoding for a fragment of our logic into a Petri net logic. Our
encoding is correct and complete, i.e., a Petri graph satisfies a formula exactly
when the encoding of the formula is satisfied by the underlying Petri net.

Putting all this together, given a graph transformation system G and a formula
F' in a suitable fragment of our logic, we can construct a Petri graph P which
approximates G, using the algorithm in [1]. Then F can be translated into a Petri
net formula [F], such that if Np is the Petri net underlying P, then Np |= [F]
implies G |= F, i.e., we reduce verification over graph transformation systems to
verification over Petri nets.

Section 2 introduces graphs, graph transformation systems and graph transi-
tion systems. Section 3 defines syntax and semantics of our temporal graph logic.
Section 4 defines Petri graphs, the structures used for approximating graph trans-
formation systems. Section 5 identifies fragments of the logic that are preserved
or reflected by approximations. Section 6 proposes an encoding of a fragment of
the logic into a Petri net logic. A last section concludes the paper and proposes
further work.

A Temporal Graph Logic for Verification of Graph Transformation Systems 3

2 Graph Transition Systems

An (edge-labeled) graph G is a tuple G = (Vg, Eg, sg, tg, labg) where Vg is
a set of nodes, Eg is a set of edges, sg,t¢ : Ec — Vg are the source and
target functions, and labg : Eg — A is a labeling function, where A is a fixed
set of labels. Nodes and edges are sometimes called items and we shall write
X = Eg U Vg for the set of items of G.

The transformation of a graph into another by adding, removing or merging
of items is suitably modeled by (partial) graph morphisms.

Definition 1 ((partial) graph morphism). A graph morphism 9 : G1 — G»
is a pair of mappings Yy : Vg, — Va,, Ve : Eg, — Eg, such that ¢y o sg, =
5G, © Vg, Yv o tg, = tg, o Y and labg, = labg, o YE. A graph morphism
¥ : Gi — G is injective if so are Yy and Yg; it is edge-injective if Yg is
injective. Edge-bijective morphisms are defined analogously. A graph G' is a
subgraph of graph G, written G' — G, if Voo C Vg and Eg: C Eg, and the
inclusion is a graph morphism.

A partial graph morphism ¢ : G1 — G2 is a pair (G,¢') where G} — G; is a
subgraph of G1, called the domain of ¥, and ¥’ : G| — G2 is a graph morphism.

Graph transformation is presented in set-theoretical terms, but could be equiv-
alently presented by using the double-pushout [7] or single-pushout [11] ap-
proaches. With respect to more general definitions, our rules can neither delete
nor merge nodes, and they have a discrete interface, i.e., the interface graph
contains only nodes and thus edges are never preserved. Similar restrictions are
assumed in [1]. While the condition of having a discrete interface can be relaxed,
the deletion and merging of nodes is quite problematic in an unfolding-based
approach.

Also observe that, as it commonly happens in the algebraic approaches to
graph rewriting, we consider basic graph grammars, without any distinction
between terminal and non-terminal symbols and without any high-level control
mechanism. We remark that, even in this basic formulation, graph grammars
are Turing complete (since they can simulate string rewriting).

Definition 2 (graph transformation system). A graph transformation sys-
tem (GTS) R is a pair (Go, R), where Gy is a start graph and R is a set of
rewriting rules of the form r = (Gp,GRg,), where G, and Gr are left- and
right-hand side graphs, respectively, and o : Vi, — Vg is an injective function.
A match of a rule v in a graph G is a morphism ¢ : G — G that is edge-
injective. The application of a rule r to a match v in G, resulting in a new graph
H, is called a direct derivation and is written G S H , where H is defined as
follows. The set Vi is VoW (VR \ (VL)) and Eg is (Eg \¢(EL)) W ER, where &
denotes disjoint union. The source, target and labeling functions are defined by
su(e) = sg(e) tu(e) =tc(e) labu(e) = labg(e) if e € (Ec \ ¢(EL)),

su(e) = Y(sr(e)) tu(e) = ¥(tr(e)) labn(e) = labr(e) if e € ER,
where ¥ : Vg — Vi satisfies ¥(a(v)) = ¥(v) if v € Vi and ¥ (v) = v, otherwise.

4 P. Baldan et al.

Fig. 1. A graph transformation system

Intuitively, the application of r to G at the match v first removes from G the
image of the edges of L. Then the graph G is extended by adding the new nodes
in Gi and the edges of Gr. All nodes in L are preserved.

A direct derivation G i A H induces an obvious partial graph morphism
Tor g G — H, injective and total on nodes, which maps items which are not
deleted in G to corresponding items in H.

A derivation is a sequence of direct derivations starting from the start graph
Go. We write Go — H if there is a derivation ending in graph H, and we denote
by Gx the set of all graphs reachable in R, i.e., Gr = {G | Go = G}.

Ezample 1. Figure 1 depicts a GTS G = (Go,{r = (GL,GRr,a)}) describing
a simple message passing system. The start graph Gy consists of three nodes
ug, U1, u2, one M-labeled edge e;, representing a message, and one C-labeled
edge eq, representing a connection. The only rule consists of graphs G, and Gg,
and function a, which is the identity on V. The rule consumes the message
and the connection, shifts the message to the successor node and recreates the
connection. Furthermore a new C-labeled edge es is created, along which the
message can be passed in the next step. Note also that the source node of the
message, representing its “identity”, is preserved by the rule. In the rest of the
paper we shall use this as a running example.

The state space of a GTS can be represented in a natural way as a transi-
tion system where the states are the reachable graphs and a transition between

two states G and H exists whenever there is a direct derivation G 2% H , as
in [3]. However, such a structure would not be sufficient to interpret the logic
introduced in the next section. Informally, since temporal modalities can be in-
terleaved with quantification (over edges), the logic allows to trace the evolution
of graph items over time and thus we need to represent explicitly which items of
a graph are preserved by a rewriting step. To this aim, after recalling the stan-
dard definition of transition systems, we introduce below an enriched variant
called graph transition systems.

Definition 3 (transition system). A transition system is a tuple M = (Sp,
Thrr, inpr, outM,sg’I) where Sy is a set of states, Ths is a set of transitions,
i, outyr - Ty — Sy are functions mapping each transition to its start and
end state, and s{)” € Sy is the initial state. We shall sometimes write s LAY

A Temporal Graph Logic for Verification of Graph Transformation Systems 5

if inp(t) = 5 and outp(t) = ', and s = s’ if there exists a (possibly empty)
sequence of transitions from s to s’.

Correspondingly, a transition system morphism h : M — M’ is a pair of
functions (RS : Spr — S, hT : Tar — Tarr) such that the initial state as well
as the start and end states of all transitions are preserved, i.e., hS(s}) = s},
hS oinp = inae o hT, and kS o outpr = outpy o RT.

A graph transition system is defined as a transition system together with a
mapping which associates a graph with each state, and an injective partial graph
morphism with each transition. We use the same name that is used in [20] for
different, but closely related structures. The main difference is that in our case
there is a clear distinction between the states and the graphs associated to
the states: This leads below to a natural notion of morphism between graph
transition systems, which will play a basic role in our definition of abstraction.

Definition 4 (graph transition system). A graph transition system (GTrS)
M is a pair (M, g), where M is a transition system and g is a pair g = (g%, g7),
where g°(s) is a graph for each state s € Sy, and gT(t) : ¢%(inm(t)) —
g° (outpr(t)) is an injective partial graph morphism for each transition t € Tyy.

Note that the result of the application of a rule to a given match in a graph is
determined only up to isomorphism, because of the use of disjoint union in the
definition. Therefore, formally speaking, the state space of a GTS contains for
each reachable graph G all graphs isomorphic to G as well. The next definition
shows how to represent the state space of a GTS with a graph transition system
(GTrS), where we get rid of such useless redundancy. Note that since the resulting
GTrS is usually infinite-state, this construction is non-constructive and useless
for practical purposes. We need the GTrS in order to define the semantics of the
logic, but verification itself is done using a different method.

Definition 5 (graph transition system of a graph transformation sys-
tem). Given a GTS R = (Go, R), a GTrS representing its state space, denoted
by GTrS(R), can be obtained as follows.

1. Consider first the graph transition system (M,g), where: Syy = Gr (set
of all graphs gemerated by R); sM = Go; Tu = {G =% H | ¢ 2%
H is a direct derivation of R}; and the mapping g = (g°,gT) is defined as
follows: g°(G) = G and g7 (G %, H) = Tora g G—H.

2. Next, for each state G in Sy and for each pair (r,v) where r is a rule
applicable to match ¢ in G, choose one among the transitions leaving from
G and using r and 1, and delete from Ty all the remaining ones.

3. Finally, GTYS(R) is defined as the graph transition sub-system reachable
from the start graph.

Ezample 2. Figure 2 depicts a GTYS of the GTS depicted in Figure 1. Since state
identities coincide with their corresponding graphs, the figure is simplified and
we directly depict the graphs and partial graph morphisms. The leftmost state is

6 P. Baldan et al.

Fig. 2. A graph transition system

Gy, the initial state of both the GTS and its GTrS. Observe that for the second
transition ¢, g7 (t2)v (the component on nodes of g7 (t3)) is an inclusion, while
g7 (t2) g is partial and is only defined on the edge e4. All transitions correspond
to different instances of the same rule.

The construction described in Definition 5 is clearly non-deterministic, because
of step 2. Among the possible GTrSs associated with the GTS of Figure 1, the one
drawn above enjoys some desirable properties: the partial injective morphisms
associated with transitions are partial inclusions (i.e., every item preserves its
name along rewriting), and edge and node names are not reused again in the com-
putation after they have been deleted. The interpretation of the logic of Section 3
will be defined only over GTrSs satisfying such properties, and called unraveled
GTrSs. For any GTrS M not satisfying these properties we shall consider an
unraveled one which is behaviorally equivalent to M, called its unraveling.

In order to characterize the unraveling of a GTrS we first need to introduce
GTrS morphisms, which will also be used later for relating a system and its ap-
proximation. A morphism between two GTrSs consists of a morphism between
the underlying transition systems, and, in addition, for each pair of related
states, of a graph morphism between the graphs associated with such states.
Furthermore, these graph morphisms must be consistent with the partial graph
morphisms associated to the transitions.

Definition 6 (graph transition system morphism). A graph transition
system morphism h : M — M’ from M = (M,g) to M' = (M',g') is a
pair (har, hg), where hpr : M — M’ is a transition system morphism, and for
each state s € Sy, hy(s) is a graph morphism from g°(s) to g's(hﬁl(s)), such
that the following condition is satisfied: for each transition s; 4 so € Ty,
9" (h31(1)) © hy(s1) = hy(s2) 0 g7 ().

The diagram below illustrates the situation. The bottom square represents tran-
sition s; LA sz in M and its image through hps in M’ (sub- and super-scripts are
avoided for the sake of readability). The vertical arrows of the left front square
show how transition ¢ is associated to a graph morphism via the g component of
M, and similarly for the back right square. Finally, the back left and front right
sides of the top square are the components of the GTrS morphism associated to
states s; and s, and the top square is required to commute.

A Temporal Graph Logic for Verification of Graph Transformation Systems 7

g'(h(s1)) g;;(t))

g(s1) g’ (h(s2))

g} g(s2) fogiia)

sy = h(s2)

Definition 7 (unraveled graph transition system). A GTrS M = (M, g)
is unraveled whenever M is a tree, for each t € Ty the morphism gT(t) :
g3 (inp(t)) — g°%(outpr(t)) is a partial inclusion, and item names are not re-
used, i.e., for all ',s" € S, if ¥ € Xys(gy N Xgs (o) there exists s € Sy such
that

T € Xgs(s) N s S8 ANsSs" Agl(s S s)(x)=z A gT(s > s")(z) =z,
where g7 (s = s') is the composition of the partial morphisms associated with
the transitions in s — s', which is uniquely determined since M is a tree.

An unraveling of a GTrS M = (M,g) is a pair (M’, h) where M’ is an
unraveled GTrS and h = (ha, hg) : M — M is a GTrS morphism, satisfying:

1. for each s € Sy, hy(s) : ¢'°(s) — g5(h3,(s)) is an isomorphism;
2. for each s € Sy and transition h3(s) Yo in M , there is a transition
s5 s in M’ such that R (t) =t' (and thus h3,(s') = s").

Proposition 1 (unraveling of a GTrS). Any GTrS admits an unraveling.

The conditions defining an unraveled GTrS M ensure that taking the union of all
the graphs associated to the states in Sy, we obtain a well-defined graph. In fact,
given any two states s and s’ and an edge e € Egs ()N Egs (4, the source, target
and label of e coincide in g¥(s) and g%(s’). We shall denote the components of
this “universe” graph as (Va, Em, sm, ta, laba), where Vg = U,cs,, Vos(s)s
Em = Usesy, Egs(s)s smle) = sgs(s)(e) if e € g°(s), and similarly for tps and
labM .

3 A Temporal Graph Logic for Graph Transformation
Systems

We now define syntax and semantics of our temporal graph logic, that extends
the logic L2 of [3]. The logic is based both on the p-calculus [6] and on second-
order graph logic [8]. Let V,, Vx, Vz be sets of first- and second-order edge
variables and propositional variables, respectively.

8 P. Baldan et al.

Definition 8 (syntax). The logic pG2 is given by the set of all formulae gen-
erated by:

Fu=nz)=n9(y)|z=y|l(z)=a|-F|FVF|3z.F|3X.F |
ze€X|Z|OF | uzZ.F

where n,m" € {s,t} (standing for source and target), v,y € V,, X € Vx, a € A
and Z € Vz. Furthermore OF is the (existential) next-step operator. The letter i
denotes the least fived-point operator. As usual the formula pZ.F can be formed
only if all occurrences of Z in F' are positive, i.e., they fall under an even number
of negations. In the following we will use some (redundant) connectives like A\, ¥,
O and v (greatest fized-point), defined as usual. We denote by uG1 its first-order
fragment, where second-order edge variables and quantification are not allowed.

Definition 9 (semantics of ;G2). Let M = (M, g) be an unraveled GTrS.
The semantics of temporal graph formulae is given by an evaluation function
mapping closed formulae into subsets of Sur, i.e., the states that satisfy the
formula. We shall define a mapping [-]M : uG2 — 25 where o is an environ-
ment, i.e., a tuple o = {(04,0x,0z) of mappings from first- and second-order
edge variables into edges and edge sets, respectively, and from propositional vari-
ables into subsets of Syr. More precisely, o, : Vo — Ep, ox : Vx — 2EM and
oz : Vz — 25M where Epq is the set of all edge names used in M. When M is
implicit, we simply write [-],.

[n(z) = 7' W)]o = [lnm(oz(x)) = My (0=(y))]l [z = ylo =llo=(z)=0=(y)]

[i(z) = a]o = [labrm(ox(2)) = al [y € Y]o=loz(y)eox(Y)]
[[ﬁF]]ast\llF]]a |[F1VF2]]U=|IF1]]GU[[F2]]G
[[Z]]U = UZ(Z) [[“Z'F]]cY:lfp()‘U'[[F]]a[v/Z])

[OF], ={s€ Sy |35 t.s 5 s As €[F],}
IIB:L‘.F]]U - {8 € Sum | Jde € Eg(s) .8 € IIF]]U[e/:z]}
IIEXF]]G = {S € Su I JE C Eg(s) .8 € HF]]U[E/X]}

where ||-|| maps true and false to Sy and 0, respectively, v € 25¥ | and fp(f)
denotes the least fized-point of the function f.

In particular, if F' is a closed formula, we say that M satisfies F' and write
M EF, if so € [F]s, where o is the empty environment. Finally, we say that a
GTS R = (Go, R) satisfies a closed formula F, written R = F, if the unraveling
of GTrS(R) satisfies F.

The restriction to formulae where all occurrences of propositional variables are
positive guarantees every possible function Av.[F],[,/z) to be monotonic. Thus,
by Knaster-Tarski theorem, fixed-points are well-defined.

Note that using unravelled GTrS is crucial for the definition of the semantics
of the logic: items can be easily tracked since their identity is preserved and
names are never reused. This allows to remember also the identities of deleted
items, differently from what happens in the semantics given in [20,22].

A Temporal Graph Logic for Verification of Graph Transformation Systems 9

Ezample 3. The following formula states that no M-labeled message edge is
preserved by any transition: M-consumed = —3z.(l(z) = M A OJy.z = y).
The fact that this property holds in any reachable state is expressed by the
formula: always-M-consumed = vZ.(M-consumed A OZ). It is easy to see
that M-consumed is satisfied by any state of the unraveled GTrS in Fig. 2, and
thus G | always-M-consumed, where G is the GTS of Fig. 1.

The formula M-moves = —Jz.(l(z) = M A O(3y.(I(y) = M A t(y) = t(z) A
s(y) = s(x)))) states that messages always move, i.e., there is no message edge
such that in the next state there is another message edge with the same identity
(i.e., source nodes coincide) attached to the same target node. And we can
require this property to hold in every reachable state: always-M-moves =
vZ.(M-moves A0Z). Again, the GTS G satisfies this property. A GTS in which
the message would at some point cross a “looping connection” or with more than
one message would violate the formula.

4 Approximating GTSs with Petri Graphs

In the verification approach proposed in [1,3,4,5] Petri graphs, structures consist-
ing of a Petri net and a graph component, have been introduced. They are used
to represent finite approximations of the (usually infinite) unfolding of a GTS,
on which to verify certain properties of the original system. Furthermore they
provide a bridge to Petri net theory, allowing to reuse verification techniques de-
veloped for nets: a property expressed as a formula in the graph logic can be trans-
lated into an equivalent multiset formula to be verified on the net underlying the
Petri graph. Here we shall concentrate on this latter aspect. We will not treat in-
stead the construction of finite Petri graphs over-approximating GTSs, presented
in [1,4] also for varying degrees of precision, recently enriched with a technique
for counterexample-guided abstraction refinement [18], and for which the verifi-
cation tool AUGUR (http://www.ti.inf.uni-due.de/research/augur_1/) has
been developed.

Before introducing Petri graphs we need some definitions. Given a set A
we will denote by A® the free commutative monoid over A, whose elements
will be called multisets over A. In the sequel we will sometimes identify A®
with the set of functions m : A — N such that the set {a € A | m(a) # 0}
is finite. E.g., in particular, m(a) denotes the multiplicity of an element a in
the multiset m. Sometimes a multiset will be identified with the underlying
set, writing, e.g., a € m for m(a) # 0. Given a function f: A — B, by f®:
A® — B® we denote its monoidal extension, i.e., f®(m)(b) = > f(a)=b™(@)
for every b € B.

Definition 10 (Petri nets and Petri graphs). A (Place/Transition) Petri
net is a tuple N = (Sn,Tn, *(), ()®,mo), where Sy is a set of places, Ty is a
set of transitions, *(), ()*:Tn — S§ determine for each transition its pre-set
and post-set, and mo € S$ is the initial marking. A transition t is enabled at a

