e e

NIERFAEE'ESIGN

g{suin Cox o David Walken

SECOND EDITION

First Published 1993 by
Prentice Hall

Simon & Schuster Asia Pte Ltd
Alexandra Distripark

Block 4 #04-31

Pasir Panjang Road

Singapore 0511

== - © 1993 Simon & Schuster (Asia) Pte Ltd
= t A division of Simon & Schuster International group

All rights reserved. No part of this publication may be

reproduced, stored in retrieval system or transmitted in any form,

or by any means, electronic, mechanical, photocopying, recording or
otherwise, without prior permission in writing from the publisher.

Printed in Singapore

12 3 45 97 96 95 94 93

ISBN 0-13-952888-1

Cover design by Viscom Design Associates

The first edition of this book was published
by Advanced Education Software, July 1990

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Editora Prentice-Hall do Brasil, Lida., Rio de Janeiro
Prentice-Hall, Inc., Englewood Cliffs, New Jersey

USER-INTERFACE DESIGN

Preface

We decided to write this book because we became tired of waiting for someone else to do
it. Many of us who design and construct computer systems and those of us who try to
teach others how to do it are unhappy with the standard text books on system design.
They have good information on techniques 10 help us understand and control our comput-
ing system development, but they are of little help in designing good computer systems.
‘We know that there is more to making a computer system than investigating things, draw-
ing some data flow diagrams, data modelling, writing and testing programs, and imple-
menting the finished system. We know that making good computer systems is like all
interesting human activities: it is a creative, stimulating, difficult task punctuated with
flashes of insight, recognition of patterns, and emotional satisfaction of a job well done.
We know that it is a very human experience spiced with marvellous technical gadgetry,
randomness, variety and uncertainty.

You cannot create a computer system by applying a formula. There is no magic
button to press and a machine will produce a final product. There is a prevailing myth that
a technological solution exists that will allow us to create great computer systems at the
press of a button, or by the application of a rigorous proven recipe. We search for the ulti-
mate CASE tool to solve the backlogs of design and construction. These attempts are
doomed to failure as there is no prescription. The attempts may help us make better sys-
tems but they do not help us design, because design is not prescriptive. Even the Chinese
language helps preserve the myth as the word for computer can be translated as electric
brain.

Other professions know that making human artefacts takes leaps of imagination.
They know that we think visually as well as analytically. They know that the person is
more important than the machine, Computing professionals know this as well, but the na-
ture of the discipline and the nature of the technology has made us think that there has to
be a computer program that will design computer systems. After all we try to make com-
puter programs to design in other professional areas, why not our own, As a profession
we have been afraid to recognise, acknowledge, accept and use our humanness. We have

viii Preface

wanted to become mechanical in our design. We have wanted our techniques to reflect the
artefacts with which we work.

In this book we start from a different paradigm for the design of computer systems.
‘We think of the design of computer systems as designing something with which we will
communicate with other humans. When we make a new computer system we have made
another way to express ourselves and our ideas 1o another person. All computing systems
are built for human purposes, all computing systems fit into a world of human needs. We
do not create computing systems to talk to other computer systems. Even if they do com-
municate with one another they do so because we want them to for our own purposes. Us-
ers of computer systems communicate by proxy with designers and programmers. When
you write a computer program you do not write it to communicate with a machine; you
write it to communicate with a person.

When we take this view of our job as designers we can see that the focus of most
of our traditional computing training is misdirected. If you look at many curricula for
computing professionals you see it weighted with such things as mathematics, computer
programming, data modelling and hardware constructs. You occasionally see a little on
human psychology or writing skills but you never see an orientation towards human com-
munication. You see courses on computer systems design which only mention users in
passing. Students spend all their time communicating with machines using mechanistic
principles. No wonder we get unfriendly computer systems. They were designed for other
computers, not for us.

We have attempted to redress the balance and to put people back into the centre of
design. We propose to design for humans as humans. We are not electric brains, we do not
want to be electric brains, and we refuse to act as though we are. In this book you will
find much more on sketching than you will on mathematical proofs. You will find a chap-
ter on testing with people and a passing reference to testing programs. You will find a lot
on writing manuals and a little on program structure. You will see how to design artefacts
that people can understand and you will find little on program structure design.

Writing computer systems is a fun activity. It is fun because of the human compo-
nent. The education industry is rapidly destroying the fun and replacing it with sterility.
We would hope that this book might reverse the trend of people viewing computing pro-
fessionals as boring, mechanical, electric brains. We hope that more artists, communica-
tors, psychologists and humanists will be attracted to the profession and realise the
potential of this most marvellous of human artefacts. We hope that students in the profes-
sion will rise above the weight of electrons and communicate with us via their programs.

The book starts with our view of what makes a good computer system, Naturally
we believe a good computer system is one that works for and with people. We then dis-
cuss the nature of design and how we can design around people. We discuss the way peo-
ple use computing products and how they think about them. The next chapter describes
how we can test our theories and models and show that our products are usable. The rest
of the book elaborates on these themes and discusses the object/action paradigm for de-

Preface ix

sign, the use of documentation as an explanation tool, and how we can organise and con-
trol developments when we design this way.

We constructed a small computer system (Crossword Designer) to accompany the
book. You do not need the program to understand the ideas in the book as we describe the
important parts of the program interface within the text. However, using it will make
some things clearer. The compromises and mistakes of a real artefact are exposed. The
package with all its faults gives a human dimension to the text and you can see how the
ideas we espouse are realised. You can obtain a copy of Crossword Designer by contact-
ing the authors of this book at the Computer Department of the City Polytechnic of Hong
Kong.

The book was designed to support courses with such titles as Human-Computer In-
terface Design or Design and Construction of Computer Systems. The approach is more
engineering than psychological and more practical than theoretical. We have found that
students want and need guidance in how to approach the design task and want to know
what they should do when designing. The text has been used as the basis for semester
courses for second-year undergraduate students at both the University of Canberra and
the City Polytechnic of Hong Kong and for various industrial short courses. The courses
were all supported by practical projects. Usability projects involved testing commonly
available software. Design projects have come from areas of topical interest to students
and we select new subjects each time we run a course. For illustration and exercises we
use any commonly available computer system. Our main usability criterion for software
and computer systems has been student ease of access. We have applied the ideas in the
book to the design of many interactive computer applications and implemented them on
mainframes, mini-computers and personal computers.

During the preparation of this bock we have received ideas and help from many
people. The University of Canberra supported one of us with leave from teaching. Our
colleagues, family and friends have encouraged us. Our many tutors in courses over the
years have contributed much and we would like to thank all the students who have pa-
tiently tried out the ideas and given us valuable feedback. At the risk of offending every-
one we mention no-one in particular.

Most of the ideas in the book can be found in the bibliography. We have referenced
material where we know the original source of the idea or we have used similar material
to the reference. Our purpose has been to integrate and present ideas in an easily under-
stood and easily applied manner.

Kevin Cox - Hong Kong (CSCOXK@CPHKVX.BITNET)
David Walker - Canberra
March 1992

Table of Contents

Preface vii

1 What Makes a Good Computer System? 1
The ROle Of COMPULETS........ccviieiiriernieraencenssesnesaesesssreseseseesserssnsssssosonsons 7

Conceptual MOGELScocoive v setsrssenss e e s sesnsssresesssesssens sessessnosss svsnes 12

The FOrm Of INtETACHOM.vceeeirieeeererieeetrreneseensessereseeseeeeseesesbasesssss snesne 21

CONCIUSIONcorvreecvsrrrnsrssrs s erscsssnssessssenssassssssrsassnssessassissssssssssecssssesarsnon 29

2 Systems Development 33
Design MethOdOLOZIESccoovueeerireeceeriereee et eseeese s v eseeeneveerescsaes 35

The Initial Requirements Specification.......coviviviinecininnnee e 39

The DESIZN PIOCESScccevreeiriseernreniremincce s ntassssssssesssesessas svesssassssensanns 50
User-Interface Design and Implementationco.oevveeineeieseeevenrrecenennns 66

3 Usability Testing 80
What is USabIlIty?.....cccceeeeirireerrieerer e et es s ste e st sre e 82

Examples of Usability TESHNEcceeevrrcmeererverrerresereneceseeseememee e s 83

The Idea of TESUINE cvveirisisssssrsisnserrmsrerssessstsseesssesmseserosssssnsssssssssasassmsasssens 85

ApProaches t0 TESHNEccceeveiereee et e nes e e e sesseeemete et 86

WREI 10 TEST ...t stemcte st es st eea er e st ese s s st are s sasnssnsnsesasens 97

Testing Methods........ov ittt et semeeae e 101

Ethics of EXpEerimentationveceeeeesecrercrrnerireesneseccssessensessssssscsssesssonns 108
Bench-Marks for USabilityc.veverimeencerrieinenenessecssesssnensesesessesenscnns 108

Usability Check-TiStS.....c..cceieeceirieciereneeceetrre e se e eeesasmsansassenseseenas 109

Usability Testing After the Product is COmplete......cevermeerriesiseseninsenss 111

Design Guide-Lines and Usability Testing............cccceeeereeemeeereeeecenenennn 112

4 Objects and Actions 120

WHhat are ObJECISYuvvcreeemrerreirrs e e sressseesressessnsasassessrssenereren 120

vi User-Interface Design

Common Objects and ACHOISc.oucereureererieerenrrreeeserersseseseresesesesesenas 145

The Structure Of an APPLCALHONc.evereieeerrceercereeereeseereete e ssseas 162

5 Guide-lines for User-Interfaces 174
Rules fIOm XEIOX STAT....ciciievieiiesieiienirieiiesreescsseessesseeseeecssnoses sessssnsses snee 174

General PriNCIPIes.......ccooiiieeeiercectne e et e ere s ssssas e 176

COMMON USET ACCESS....verreerierrerieriereseeeessssaes e seesssssosmeessseeesssesssssssessssss 187

SCIEEN LAYOULcoertrumieieccccrreersnesee s rrasess s eressbeserssseressessrssssessnssanae 193

Designing Paper FOIS ..o oiirnienieenenesereesstere st eee s e seemeenas 198

TheE USE Of COLOUTuoeveeieeicriereemcieettiteses e ceeeseeeeeseeeeeessesss sseessnssssesaen 199

Using Sound in COMPULET SYSIEINSc.cccvreeerrrerereesreessereeeeseseessesssnsesnes 200

6 Designing a Dialogue Model 211
Developing the Conceptual MOGEL.........ovviienvereirassmnnmnnisnessesnsssscsseseseeses 212
PIOLOLYPING.....cciecreireitiicseene e sns e s sesssersastnsssesranessesssessasstessasensannes 231

Designing for FIEXIDITLYcccoceiiiiineerieniiee st caeseermeriseieresesseseemssnane 241

7 User Documentation 269
A Strategy for DOCUMENtAtON.cooeereccreeireencies e s en e seencsaeeerecnns 269

8 Forms of Documentation 285
USEr MANUALS ...ttt st e stseseeeeeeseceentesseessassneasens 286

Brochures 0T FIYETISoiiiisiieinireieeinnsnrsensnsseesessessssssssssessosesarsessassnens 303

COUDSES .vveeeeeeeeemeeeeetr et et eisses sebesatsstsbasasesenemea s eem st saas e sre e nenaaen 305

On-1ine DEMONSITALIONS.........cccvivreriiresiesteissiessesesssseseseesreescssaresssessessaras 311

Quick Reference GUIAES............ccccieeicireeeee ettt eeee e eene e 315

InteraCtive TULOMALSccveiievieerireer it ser e cessasssssseaeesnesonssressmeenans 318

On-lNe HEIP .ottt s rrese e sensssee s s msesssrssseenenns 320

9 Implementation 329
Software Design and COnSIUCHON.........cccerereereerirsrersereesrssesseses eresesessns 329

Project ManagemenLcoveieenecnnnienesmsscsemsesessserersasssssimssssssssecesssenesen 342
Bibliography 352
Index 357

About the Authors 363

Chapter 1

What Makes a Good Computer

System?

A characteristic feature of human beings is that they are users of tools. We build things
using hammers, chisels and saws, we transport ourselves between two places in cars,
trains and aeroplanes, we cook our meals on a stove. A computer is a tool. We use com-

puters to do things such as:

o Control a microwave oven.

e Send the electricity bill for the house with that oven.
e Make models of the atmosphere which predict the changes in world climate
caused by the use of that (and many other) ovens.

Use of a tool involves co-operation between
a person (the user) and the tool. We do not
say "The hammer banged in the nail", we
say "I banged in the nail using the hammer".
The user is in charge. The hammer does not
say which nail to put in, or beep at you
when you use a large nail rather than a
small one. Similarly, the computer does not
decide to perform a task, although it is ca-
pable of obeying a complex series of in-
structions. A person must set and switch on
the microwave oven, decide that electricity
bills have to be sent, and build the atmo-
spheric model.

Because of this requirement for co-
operation, the way in which the person has

Figure 1.1 A tool.

2 User-Interface Design

Output
User Device Documentation

Device

(a) The User-Interface at the Hardware Level

Surname Membership No. []

gsf,‘» Given Names

é Address

ﬁ Postcode
| —
§ m of Birth

Z ests

g Frlcket |

1] Membership Category (F/A/H) 0

i Last Subscription Payment (Year) |

T
”_..

o

City City
BUS785| Brock Brock

Ci Sydney
e =='% L

Airport Senna Prost

Prost
ZZA321 Rly Stn

104 321 Gardner

{')0 T T | | T | I I
8.00 9.00 10.0011.00 12.00 1.00 2.003.00 4.00 5.006.00
Time

LS S

SENNA PROST MOSS BRABHAM RAINEY GARDNER BROCK

(b) Three Different User-Interfaces at the Software Level

Figure 1.2 The user-interface.

What Makes a Good Computer System? 3

to interact with the tool determines whether or not the tool is usable.

The handle of a hammer must be of an appropriate size, shape and texture for a hu-
man hand to grip firmly and must be placed appropriately in relation to the head to pro-
vide the correct leverage. The hammer as a whole must not be too heavy to lift, but must
be heavy enough to drive the nail home. The user must be able to see where the head will
strike in relation to the nail, in order to line up a hit. In addition, the user must have
some concept of what a hammer is and what it is used for, or they might believe that it is
for stirring soup.

These features constitute the user-interface of the hammer. It is easy to imagine a
hammer with a poor user-interface: a short, fat, greasy handle, and a ball-shaped head
with a cowl around it, all weighing a few hundred kilos. The reason that we do not find
hammers like this is that people prefer hammers that they can use, so the design of the
hammer has evolved over time to provide a good user-interface. This evolution is still
continuing: within the last twenty years, metal handles with rubber grips have appeared
to compete with wooden handles.

A computer is a strange type of tool in that the same box (or set of boxes) can be
made to perform a wide variety of tasks.” Although food processors also possess this
property to some degree, they do not have the same versatility. At a distance [Figure
1.2(a)], the interface is seen as being the hardware. On a personal computer, this may
consist of a screen on which text or pictures can be displayed, a keyboard and a mouse
which the user can use to input data and commands. It also consists of any documenta-
tion used to describe and support the system.

Although the keyboard, mouse and screen are the most common ways of interact-
ing with computers, there are other ways. In particular, sound, both in the form of voice
input and of audible responses from the machine, is likely to become increasingly impor-
tant.

Closer up [Figure 1.2(b)], the displays for different systems look different, require
different inputs and do different things. One of the systems is used to maintain club
membership records, one is used to draw diagrams, and the third is used to schedule vehi-
cles from a vehicle pool. The user conducts a dialogue with the computer, in which their
input produces some sort of response (e.g. the appearance of text or a change to a draw-
ing) on the screen. The precise nature of the dialogue depends on the task to be per-
formed.

The user-interface constitutes peoples’ perception of the tool. The user does not
need to know about nor is he interested in the metallurgy of the head of the hammer. If
something about the crystal structure results in a hammer that is soft or bends, then itis a
bad hammer. If a computer system does not do what it is expected to do, on the basis of
what the user knows about it from the user-interface, then it is a bad computer system.

Tools are learned. Leaming to use a tool involves two distinct processes:

e Leaming about the tool, i.e. whart tasks it can be used to do.
¢ Leaming to gperate it, i.e. how to perform those tasks.

4 User-Interface Design

This involves building up a conceptual model
of the tool, which tells us what it is and how it
behaves, and leaming the actual skills to use it.
User Control In this way we leam that a hammer is for
banging in nails and not for stirring soup, and
we learn, largely through practice, how 10 hit a

Transparenc
P y nail so that it goes in straight.
o With a tool such as a hammer, the form
Flexibility of the tool is a significant help, since the form
gives strong cues as to its function: there is a
Leamability handle for holding, there is a flat area for hit-

ting the nail with (so our aim does not have to
Figure 1.3 Characteristics of be tgo accurate), anq the claw at t_he b.ack is for
a good tool. pulling out bent nails, so we pick it up and
hold it the correct way without having to think
"which way up does it go?"

With a computer system, the same thing should be true: the form of the presenta-
tion of the system to the user should tell them what it can do, and give clear indications of
how.

An essential feature of a tool is that it disappears. When we are using it, we con-
centrate on the problem, and not on the use of the tool. When we are banging in a nail,
we do not watch the hammer, we watch the nail. We have leamed (after a few bruised
fingers) how long the hammer is and how to manage the swing, and now do it instinc-
tively. Similarly, if we are using a word processor, we want to concentrate on the docu-
ment that we are writing, not on which key to press. We refer to this property as
transparency.

Tools must also be flexible. Different people will want to use tools in different
ways. Some of us are even left-handed. Thus a hammer can be used for banging in short
nails as well as long nails, prising open cupboards, and even for stirring soup. A spread-
sheet can be used to produce a balance sheet, predict stock-market trends, or for typing
and printing a document if nothing better is available. If we can use a tool for unintended
purposes (even if it does not do it as well as a different tool that we do not have) we re-
gard that as a plus.

Unfortunately, many computer systems are not good tools. Dialogues are often
clumsy and hard to leam, dictate to the user, and inhibit rather than assist the user’s work
by hiding information. The documentation describes in gruesome detail how to perform
highly specific operations, but nowhere explains what the system can be used for nor re-
lates the user’s tasks to the keystrokes that are described. The result is frustration, irrita-
tion, and a tendency to use other, easier-to-use tools, such as pens and calculators.

The reason for this is historical (Figure 1.4). In the 1960s and 70s, computer sys-
tems performed well defined sets of operations, mainly routine transactions and massive
scientific computations, and the interaction was handled by specially trained personnel

What Makes a Good Computer System? 5

. Trained Personnel]

(C'L
In the Future

Figure 1.4 People and computers.

for whom their use was the main activity in their job: programmers, operators, data-entry
personnel, trained word processing operators, trained clerical staff, research scientists.
Most people had no contact with computers, and even those that had did not use them for
more than a few specific tasks; a research scientist might use a computer for complex
mathematical modelling, but would still have their papers typed up on a manual type-
writer. Since the machines were expensive, the major emphasis was on making efficient
use of the machine, and not of the people’s time, so that the user-interfaces were geared to
whatever made the machine work most efficiently. Home computers had been thought
of, but had failed miserably in the market place because they were too hard to use.

Thus, although computers were being used as tools, a better analogy would be with
a crane or a bulldozer, and not with a hammer. The problem here is that what a crane
driver regards as a good user-interface and what an amateur carpenter regards as a good
user-interface are two different things. The crane driver has pride in being skilled at a
difficult task and would probably resent any innovations that made it possible for every-
body to drive cranes.

This is exactly what has happened with computing. The use of computers is now
widespread. The number of people who do not use them in some way or another as part

6 User-Interface Design

of their work is becoming quite small, and they are using them in a different way. They
are not using them because their use is the main activity in their job, but to support other
activities, and a given individual will use them in a wide variety of ways, e.g. word proc-
essing, calculations, information retrieval, "what if"" modelling, as well as routine transac-
tions.

However, many of the user-interfaces are hangovers from past times. Worse, many
of the ideas about what is a "satisfactory" user-interface are also hangovers, with many
computer professionals seeing no need for change. One result is that the operating sys-
tem currently supplied with the bulk of personal computers sold has an archaic command-
driven interface that is hard to learn and stops many potential users at first base. That
there is a demand for better interfaces is demonstrated by the success of the Apple Macin-
tosh, a machine whose main selling-point is its user-interface.

The major impact of poor user-interfaces is economic. Computer hardware and
software is cheap, but salaries are expensive. A marginal gain in efficiency through a bet-
ter word processor, easier-to-use information retrieval, reporting or analysis software can

(a) Embedded (b) Personal

—

(c) Organisational

Figure 1.5 Uses of computers.

What Makes a Good Computer System? 7

rapidly mount up to thousands of dollars for an individual and hundreds of thousands or
millions over a large organisation, for expenditures of a fraction of this amount.

For this reason, the design of better user-interfaces for computer systems has be-
come an area of major interest. Research into user-interfaces covers a vast area, from
cognitive psychology and ergonomics on one hand, to graphics and speech recognition.
A major benefit already appearing from this research is the current generation of graphi-
cal user-interfaces, which started with the Xerox Star in the late 1970s, and which are
currently incorporated into such products as the Apple Macintosh and the Microsoft Win-
dows software. This book is concemed with the application of the ideas from this re-
search and development work to the design of computer systems.

In the following sections we will expand on the idea of a computer as a tocl by
talking about what we do with computers, and about who uses them. We will then de-
velop the idea of a conceptual model, and discuss in more detail the way in which the us-
ability criteria can be applied to computer systems.

1.1 The Role of Computers
L1.1 Uses of Computers

In order to design tools we must first consider what we use them for. There are three
main uses for computers (Figure 1.5):

e As embedded systems in electrical devices such as microwave ovens and video
recorders. These perform a small range of functions specific to the device into
which they are built, e.g. in a microwave oven, the computer operates as a
clock, a controller for the power level, can accept and remember commands
affecting the cooking time and power level, and controls the alarm that is
sounded at the end of the set cooking time.

e As personal systems, used for creating and editing documents, drawings,
animation and music for personal use or subsequent distribution or publication,
and for doing calculations.

e As pan of information systems within an organisation or a society.

There can, of course, be overlap: an embedded system that operates traffic lights may
feed data into a larger information system that monitors traffic flows, while one that is
part of a synthesiser may be used to compose music; and documents created on a per-
sonal system may be sent to other people within an organisation, and so be part of that or-
ganisation’s information system.

Within information systems, there are three main types of tasks:

8 User-Interface Design

» Transaction processing.
e Decision-making.
¢ Information retrieval.

A transaction is a routine task performed frequently and repetitively. It takes its name
from financial transactions: the exchange of goods for money, as in a shop. Typical
transactions handled by information systems include making a deposit at a bank, booking
an air ticket, paying a bill.

Most large-scale computer systems are oriented towards transaction processing.
The transactions are normally presented to the user as a well defined series of steps from
which little or no deviation is permitted. Typical of this approach is the withdrawal of
money from an automatic teller machine:

Insert card.

Type in Personal Identification (PIN) Number.
Select transaction type (Withdrawal).

Select account.

Enter amount to be withdrawn.

Remove card.

Collect cash.

Collect transaction slip.

These steps are always performed in order. If a mistake is made, it is usually possible to
repeat the last step, or to cancel the transaction entirely and start again. If the machine
detects an error it can force repetition of the step or terminate the transaction. It may also
retain the card.

Decision-making requires a number of steps (Figure 1.6):

The gathering of information on which to base the decision.
The determination of possible actions.

Modelling of the consequences of each of the courses of action.
Choosing the action to take.

Model
Conse-
quences

Determine
Possible
Actions

Choose
Action

Figure 1.6 Decision-making.

What Makes a Good Computer System? 9

The role of a computer system in decision-making processes is as an aid. Itis used
to retrieve relevant data from one or more sources, to organise it in a manner relevant to
the decision at hand, and to make quantitative assessments of the effects of some possible
actions. Its use is normally relevant only to some aspects of the decision. The decision
itself is made by the person. Computer systems performing this role are often referred to
as decision-support systems.

Booking an airline ticket involves a decision: firstly, one must find out what flights
are available; one then formulates a series of altemnative actions (i.e. taking one of the
available flights, going by train or bus, or staying home), weighs up these alternatives in
the light of various criteria (e.g. whether the flight gets you there on time for your ap-
pointment, whether it means you have to get up too early in the morning, what the cost is
for alternative routes), and selects the "best” aliernative. The airline’s booking system
does not make this decision: it merely supplies you with the times of the available flights,
and then records the result of your decision in the form of a booking on the chosen flight
(if any). Thus the computer system is acting in a decision-support role. The actual book-
ing is a transaction.

The final type of task is information retrieval. This is similar to the queries and re-
ports that are the basis of the information-gathering process in decision-making, but we
distinguish information retrieval processes from these in that the use of the information
retrieved is of no concem to the system. Typical information retricval systems are the
bibliographic, financial, scientific and legal databases available for public access, and the
systems installed in museums to give information on exhibits.

1.1.2 Types of User-Interface

The user-interfaces of different kinds of systems are adapted to their function. Embed-
ded systems can have highly specialised user-interfaces, designed specifically for the task
at hand, e.g. with a microwave oven, the user presses buttons or tums knobs to set cook-
ing times and powers before starting the cooking process. The oven beeps when the pre-
set cooking time is elapsed. In theory, these interfaces can be very good, because they do
not contain any extraneous elements. In practice, many are very poor, because a few
knobs or buttons are forced to perform a multitude of functions, and the user rarely leamns
all of them. Can you use all the functions on a microwave oven or an office telephone
system? Do you even know what they are?

For personal systems, general-purpose hardware and software is used, e.g. a
personal computer with keyboard, mouse and screen, running packages such as word
processors, spreadsheets, and drawing packages. The user commonly has a great deal of
flexibility in what they do and how they do it. With a drawing package, the mouse can be
used to draw lines, rectangles and other shapes, to select line types and fill patterns, to
move, reshape and resize them, simply by pointing to menu options or paris of the
drawing displayed on the screen. A conventional keyboard is used to enter text for

