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Preface

THIS BOOK introduces the subject of Fou i ransform spectroscopy from
a level that requires a knowledge of un/y introauctory optics and mathematics
and proceeds to the development of optical theory and cquations to the
extent required by the advanced student or rescarcher. M ~*erial is included
for the physicist, chemist. astronomer, and others wi .  interested in
spectroscopy.

The subject is approached through optical principles, not abstract mathe-
matics. Information theory, Fourier analysis, and mathematical theorems.
a very cursory knowledge of which is suflicient, are presented only to com-
plete derivations or to give alternate views of an individual subject.

In some chapters the subject matter is approached in two ways. The
first approach is through simple optics and physical intuition. The second,
through a knowledge of Fourier analysis and the concepts of convolution
and autocorrelation. This dual treatment bridges the gap between the intro-
ductory material in the book and the advanced material in the journals.

There is no longer any question about the wide applicability of Fourier
transform spectroscopy. For the visible wavenumber range, the requirements
of Fourier transform spectroscopy have been met by several laboratories,
and at this writing, at least one company markets equipment which spans
the spectral region from the visible to the millimeter wavelengths. This
span has applications in many fields of study, and because of this, the readers’
interests most certainly will be diverse. Thus, a genuine understanding of
the techniques can be obtained only through the most basic assumptions.

To aid in the reader’s quest for reference material, almost every chapter
has a set of pivotal references appended. Bibliographies and indexes. one
indexed by author and the other by subject, appear at the end of the book.

If the reader wishes an in-depth treatment of Fourier analysis, Bracewell's
book, “The Fourier Transform and Its Application,” is recommended. For
studies of interferometers, Steel’s book. “Interferometry,” should be ¢Hn-
sulted. For Fourier analysis in optics. Mertz's book. * Transformations in
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Xvi PREFACE

Optics,” is an excellent reference. To obtain information about the Cooley-
Tukey algorithm, the [EEE Transoctions on Audio and Electroacoustics,
15 (2), 76, 1967) should be consulted. For the latest developments, the papers
that were presented at the Aspen International Conference on Fourier
Spectroscopy, 1970 (G. A. Vanasse, A. T. Stair, Jr., and D. J. Baker, eds.,
AFCRL-71-0019, 5 Jan. 1971, Spec. Rep. No. 114, L. G. Hanscom Field,
Bedford, Massachusetts, 1971) should be read. For the physics and chemistry
of the far infrared, the book “ Far-Infrared Spectroscopy” by K. D. Méller
and W. G. Rothschild is reccommended.

The author hopes that this book will help students reach a level at which
they can undertake advanced research programs in spectroscopy. He has
tried to cover most of the major subjects that are needed for such develop-
ment. However, such subjects as internal modulation, chirping, and other
specialized problems not normally encountered have been excluded. The
references given at the end of the book should help the reader with such
subjects.
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CHAPTER ONE

Fourier Transform Spectroscopy

INTRODUCTION

Thc subject of Fourier transform spectroscopy (FTS) is best
introduced by discussing the merits and applications>of Fourier transform
spectrometers in terms of (1) general advantages over conventional instru-
ments, (2) specific advantages and disadvantages, (3) the resolving power of
two-beam interferometers, (4) quality factors, (5) spcctral ranges, and (6)
utilization in science and industry.

Some mention also needs to be made of the basic similarity of lamellar
gratings and Michelson interferometers, the methods of judging interfero-
meters, and the extension of spectral studies into the infrared and far-
infrared regions through the the development of interferometry or Fourier
transform spectroscopy.

A short article by P. Connes [1] that describes Fourier transform spectro-
scopy i1s recommended as supplementary reading. Dr. Pierre Connes and his
wife, Dr. Janine Connes, are pioneers in the fields of infrared astronomy and
interferometry.

GENERAL ADVANTAGES
OF FOURIER TRANSFORM SPECTROMETERS

Basically, the advantages of Fourier transform spectrometers arise from
two major concepts known as the Fellgett and Jacquinot advantages. These
are discussed in more detail in the following chapter, but they are mentioned
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here because their physical aspects are easily understood if the reader has a
cursory knowledge of spectroscopy

An interferometer receives information from the entire range of a given
spectrum during each time element of a scan, whereas a conventional grating
spectrometer receives information from only the very narrow region which
lies within the exit slit of the instrument. Thus, the interferometer receives
information about the entire spectral range during an entire scan, while the
grating instrument receives information only in a narrow band at a given time.
This is a statement of the Fellgett or multiplex advantage.

The interferometer can have a large circular source at the input or entrance
aperture of the instrument with no strong limitation on the resolution. Also,
it can be operated with small f/numbers or with large solid angles at the source
and detector. However, the resolution of a conventional grating-type spectro-
meter depends finearly on the instrument’s slit width, and the detected power
depends on the square of the area of equal slits. A grating-type spectrometer
requires long and narrow slits which never can have the same area for the
same resolving power as the interferometer. Also, for high resolution, a
spectrometer requires large radii for the collimation mirrors, and this con-
dition in turn necessitates large f/numbers or small solid angles. Quantita-
tively, the ability of interferometers to collect large amounts of energy at
high resolution was expressed by Jacquinot as a throughput or érenduc
advantage of interferometers over spectrometers.

SPECIFIC ADVANTAGES
AND DISADVANTAGES OF INTERFEROMETERS

Several additional advantages follow from the Fellgett and Jacquinot
advantages and can be listed as follows:

Very large resolving power.

High wavenumber accuracy.

Vastly reduced stray or unwanted flux problems.

Fast scanning time, which increases the probability of successfully

completing an experiment.

Large wavenumber range per scan.

6. Possibility of making weak-signal measurements at millimeter
wavelengths.

7. Use of small images in sample compartments without requiring
special measures.

8. Measurement in amplitude spectroscopy of complex reflection or

transmission coefficients.

= il =
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INTERFEROMETERS 3

9. Low cost of basic optical equipment.
10. Smaller size and lower weight of interferometers than spectro-
meters.

The few disadvantages of interferometers are that they do require access to
computer facilities, and computer costs do have to be considered as factors
in their operation. They are also somewhat deficient because absolute magni-
tudes of flux are sometimes in error by a few per cent, and the interferograms
(recorded signals versus interferometer arm displacement) sometimes cannot
be visually interpreted, which makes it difficult for an operator to judge
quickly whether or not an experiment is satisfactory.

The large resolving power of an interferometer is a result of the Fellgett and
Jacquinot advantages and depends linearly on the relative arm displacement
of the instrument’s movable mirror. Relative mirror displacements of the
order of 2 m can be attained with some interferometers. This displacement
ability has made it possible to observe weak lines with resolving powers of the
order of 10° or higher.

The high wavenumber accuracy and the problem of reduced stray light
both result from the interference phenomena inherent in the instrument.
Accurate movement of an interferometer’s movable mirror carriage produces
a precise change in the interference pattern which can be capitalized on with
excellent wavenumber accuracy in the computed spectrum. Because the
unwanted waves which reach the instrument’s detector have a definite
wavelength, they produce distinct interference patterns which, when trans-
formed into spectra, are identifiable. It is not uncommon to obtain trans-
mittance measurements which are reliable to as low as 0.3 %.

Fast scan times (sometimes less than 1 sec), a large wavenumber range
(sometimes as large as a decade from the minimum to maximum wave
number), and a measurement capability in millimeter wavelengths even when
the source is very weak are all gained through the Fellgett and Jacquinot
advantages. The ability to use small images at the sample is also derived from
the multiplex and étendue advantages.

Complex reflection or transmission coefficients can be measured directly
in amplitude spectroscopy by placing the sample in one arm of the interfero-
meter. The amplitude and phase angles of the complex reflection or trans-
mission coefficients can be obtained without any special data manipulation,
such as is required in a Kramers-Kronig analysis. Thus, complex indices of
refraction can be noted experimentally. Also, it is possible to make accurate
flux calculations even when the transmitted (reflected) flux is as low as 0.01 9.
Effects of different boundaries in a sample can also be separated.

Partly because interferometers are relatively simple instruments, their
space requirement and weight are small. For example, the U.S. Nimbus II1
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satellite carried a Michelson interferometer which weighed, with its power
supply, 14.5 kg and required only 1 or 2 ft* of space. This instrument operated
for several months 1n orbit around the earth and took 1% accurate radio-
metric data between 400 and 2000 cm™'. In the Viking Project, one of the
basic instruments in the probe will be an interferometer which will scan the
surface of Mars. The optical systems of interferometers are frequently less
expensive than those of spectrometers; however, the cost of high-speed data
handling systems that are needed for the operation of interferometers can
nullify these savings. .

The disadvantages of interferometers are few, and these are rapidly being
minimized. For instance, when transmittance or reflectance measurements are
made, the results can be in error up to 5% of the absolute value. Fluctua-
tions in the interferogram, or recorded signal versus the instrument’s arm
displacement, can produce this amount or error. If the error is random,
repetition of the experiment can reduce the deviation. With some of the
commercial instruments, which have scan times of less than 1 sec and compu-
ter controls, hundreds of repeated experiments can be performed in minutes
and computer-averaged in the laboratory.

Often, a spectrum can be so complicated that the experimenter cannot
immediately learn much from the interferogram. This problem can be solved
with one of two methods. The low-cost method is through the experimenter’s
experience and in his knowing a few of the interferogram’s signatures or
tell-tale features which presage the particular spectral features sought. He can
then apply Fourier analysis to a few simple cases, such as a Gaussian spec-
trum, and can make sliderule estimates of the experimental progress. The more
expensive but more satisfying technique is to use real-time analyses or rapid
computer calculations. If the experimenter has a minicomputer in his labora-
tory with a memory of 4000 or more words, he can compute the spectrum over
the entire wavenumber range while the data are being recorded. In fact, as
the interferometer’s mirror carriage moves to larger displacements, he can
observe the increase in resolving power, or if the experiment is especially long,
he can watch the desired spectral features develop. If it is short, he can obtain
the results of the entire scan almost instantly. In addition to the real-time
analyses, he can wait until the end of the experiment and make on-line
computer calculations of the spectrum in a very short time of seconds or
minutes. i

Large computers are used by most experimenters to transform the interfero-
grams into spectra if the data points exceed 1024. If on-line computer time-
sharing is available with suitable graphic and tabular data return, there is no
problem, but if the data have to be recorded on paper tapes and converted
to cards, there is usually a delay of one or two days. The computation time
can be shortened considerably if the Cooley-Tukey algorithm is used. This



