Mario Bravetti
Manuel Nunez
Gianluigi Zavattaro (Eds.)

Web Services
and Formal Methods

Third International Workshop, WS-FM 2006
Vienna, Austria, September 2006
Proceedings

LNCS 4184

@ Springer

Mario Bravetti Manuel Nunez
Gianluigi Zavattaro (Eds.)

Web Services
and Formal Methods

Third International Workshop, WS-FM 2006
Vienna, Austria, September 8-9, 2006

Proceedings
FhEH

ﬁ%‘

@ Springer

Volume Editors

Mario Bravetti

Universita di Bologna

Department of Computer Science

Via Sacchi 3, 47023 Cesena (FC), Italy
E-mail: bravetti @cs.unibo.it

Manuel Nuiiez

Facultad de Informatica (UCM)
28040 Madrid, Spain

E-mail: mn@sip.ucm.es

Gianluigi Zavattaro

Universita di Bologna

Dipartimento di Scienze dell’ Informazione
Mura A. Zamboni, 7, 40127 Bologna, Italy
E-mail: zavattar @cs.unibo.it

Library of Congress Control Number: 2006931574

CR Subject Classification (1998): D.2.4,C.2.4,FE3,D.4,C.4,K4.4,C.2
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-38862-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-38862-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11841197 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4184

Lecture Notes in Computer Science

For information about Vols. 1-4061

please contact your bookseller or Springer

Vol. 4185: R. Mizoguchi, Z. Shi, F. Giunchiglia (Eds.),
The Semantic Web - ASWC 2006. XX, 778 pages. 2006.

Vol. 4184: M. Bravetti, M. Niifez, G. Zavattaro (Eds.),
Web Services and Formal Methods. X, 289 pages. 2006.

Vol. 4180: M. Kohlhase, OMDoc — An Open Markup
Format for Mathematical Documents [version 1.2]. XIX,
428 pages. 2006. (Sublibrary LNAI).

Vol. 4176: S K. Katsikas, J. Lopez, M. Backes, S. Gritza-
lis, B. Preneel (Eds.), Information Security. XIV, 548
pages. 2006.

Vol.4168:Y. Azar, T. Erlebach (Eds.), Algorithms — ESA
2006. XVIII, 843 pages. 2006.

Vol. 4163: H. Bersini, J. Carneiro (Eds.), Artificial Im-
mune Systems. XII, 460 pages. 2006.

Vol. 4162: R. Krilovi¢, P. Urzyczyn (Eds.), Mathemat-
ical Foundations of Computer Science 2006. XV, 814
pages. 2006.

Vol. 4159: J. Ma, H. Jin, L.T. Yang, J.J.-P. Tsai (Eds.),
Ubiquitous Intelligence and Computing. XXII, 1190
pages. 2006.

Vol.4158: L.T. Yang, H. Jin, J. Ma, T. Ungerer (Eds.), Au-
tonomic and Trusted Computing. XIV, 613 pages. 2006.
Vol. 4156: S. Amer-Yahia, Z. Bellahsene, E. Hunt, R. Un-
land, J.X. Yu (Eds.), Database and XML Technologies.
IX, 123 pages. 2006.

Vol. 4155: O. Stock, M. Schaerf (Eds.), Reasoning, Ac-
tion and Interaction in Al Theories and Systems. X VIII,
343 pages. 2006. (Sublibrary LNAI).

Vol.4153:N. Zheng, X. Jiang, X. Lan (Eds.), Advances in
Machine Vision, Image Processing, and Pattern Analysis.
XIII, 506 pages. 2006.

Vol. 4152: Y. Manolopoulos, J. Pokorny, T. Sellis (Eds.),
Advances in Databases and Information Systems. XV,
448 pages. 2006.

Vol. 4151: A. Iglesias, N. Takayama (Eds.), Mathemati-
cal Software - ICMS 2006. XVII, 452 pages. 2006.

Vol. 4150: M. Dorigo, L.M. Gambardella, M. Birattari,
A. Martinoli, R. Poli, T. Stiitzle (Eds.), Ant Colony Opti-
mization and Swarm Intelligence. X V1, 526 pages. 2006.

Vol. 4146: 1.C. Rajapakse, L. Wong, R. Acharya (Eds.),
Pattern Recognition in Bioinformatics. XIV, 186 pages.
2006. (Sublibrary LNBI).

Vol. 4144: T. Ball, R.B. Jones (Eds.), Computer Aided
Verification. XV, 564 pages. 2006.

Vol. 4139: T. Salakoski, F. Ginter, S. Pyysalo, T.

Pahikkala, Advances in Natural Language Processing.
XVI, 771 pages. 2006. (Sublibrary LNAI).

Vol. 4138: X. Cheng, W. Li, T. Znati (Eds.), Wireless
Algorithms, Systems, and Applications. X VI, 709 pages.
2006.

Vol. 4137: C. Baier, H. Hermanns (Eds.), CONCUR 2006
— Concurrency Theory. XIII, 525 pages. 2006.

Vol. 4136: R.A. Schmidt (Ed.), Relations and Kleene
Algebra in Computer Science. XI, 433 pages. 2006.

Vol. 4135: C.S. Calude, M.J. Dinneen, G. Piun, G.
Rozenberg, S. Stepney (Eds.), Unconventional Compu-
tation. X, 267 pages. 2006.

Vol. 4134: K. Yi (Ed.), Static Analysis. XIII, 443 pages.
2006.

Vol. 4133: J. Gratch, M. Young, R. Aylett, D. Ballin,
P. Olivier (Eds.), Intelligent Virtual Agents. XIV, 472
pages. 2006. (Sublibrary LNAI).

Vol. 4130: U. Furbach, N. Shankar (Eds.), Automated
Reasoning. XV, 680 pages. 2006. (Sublibrary LNAI).

Vol. 4129: D. McGookin, S. Brewster (Eds.), Haptic and
Audio Interaction Design. XII, 167 pages. 2006.

Vol. 4128: W.E. Nagel, W.V. Walter, W. Lehner (Eds.),
Euro-Par 2006 Parallel Processing. XXXIII, 1221 pages.
2006.

Vol. 4127: E. Damiani, P. Liu (Eds.), Data and Applica-
tions Security XX. X, 319 pages. 2006.

Vol. 4126: P. Barahona, F. Bry, E. Franconi, N. Henze,
U. Sattler, Reasoning Web. X, 269 pages. 2006.

Vol. 4124: H. de Meer, J.P. G. Sterbenz (Eds.), Self-
Organizing Systems. XIV, 261 pages. 2006.

Vol. 4121: A. Biere, C.P. Gomes (Eds.), Theory and Ap-
plications of Satisfiability Testing - SAT 2006. XII, 438
pages. 2006.

Vol. 4119: C. Dony, J.L. Knudsen, A. Romanovsky, A.
Tripathi (Eds.), Advanced Topics in Exception Handling
Components. X, 302 pages. 2006.

Vol. 4117: C. Dwork (Ed.), Advances in Cryptology -
CRYPTO 2006. XIII, 621 pages. 2006.

Vol. 4116: R. De Prisco, M. Yung (Eds.), Security and
Cryptography for Networks. XI, 366 pages. 2006.

Vol. 4115: D.-S. Huang, K. Li, G.W. Irwin (Eds.), Com-
putational Intelligence and Bioinformatics, Part ITI. XXI,
803 pages. 2006. (Sublibrary LNBI).

Vol. 4114: D.-S. Huang, K. Li, G.W. Irwin (Eds.), Com-
putational Intelligence, Part II. XXVII, 1337 pages.
2006. (Sublibrary LNAI).

Vol. 4113: D.-S. Huang, K. Li, G.W. Irwin (Eds.), Intel-
ligent Computing, Part I. XXVII, 1331 pages. 2006.

Vol. 4112: D.Z. Chen, D. T. Lee (Eds.), Computing and
Combinatorics. XIV, 528 pages. 2006.

Vol.4111: F.S. de Boer, M.M. Bonsangue, S. Graf, W.-P.
de Roever (Eds.), Formal Methods for Components and
Objects. VIII, 447 pages. 2006.

Vol. 4110: J. Diaz, K. Jansen, J.D.P. Rolim, U. Zwick
(Eds.), Approximation, Randomization, and Combina-
torial Optimization. XII, 522 pages. 2006.

Vol. 4109: D.-Y. Yeung, J.T. Kwok, A. Fred, F. Roli, D.
de Ridder (Eds.), Structural, Syntactic, and Statistical
Pattern Recognition. XXI, 939 pages. 2006.

Vol. 4108: J.M. Borwein, W.M. Farmer (Eds.), Mathe-
matical Knowledge Management. VIII, 295 pages. 2006.
(Sublibrary LNAI). -

Vol. 4106: T.R. Roth-Berghofer, M.H. Goker, H. A.
Giivenir (Eds.), Advances in Case-Based Reasoning.
X1V, 566 pages. 2006. (Sublibrary LNAT).

Vol. 4104: T. Kunz, S.S. Ravi (Eds.), Ad-Hoc, Mobile,
and Wireless Networks. XII, 474 pages. 2006.

Vol. 4099: Q. Yang, G. Webb (Eds.), PRICAI 2006:
Trends in Artificial Intelligence. XXVIII, 1263 pages.
2006. (Sublibrary LNAI).

Vol. 4098: E. Pfenning (Ed.), Term Rewriting and Appli-
cations. X1II, 415 pages. 2006.

Vol. 4097: X. Zhou, O. Sokolsky, L. Yan, E.-S. Jung, Z.
Shao, Y. Mu, D.C. Lee, D. Kim, Y.-S. Jeong, C.-Z. Xu
(Eds.), Emerging Directions in Embedded and Ubiqui-
tous Computing. XXVII, 1034 pages. 2006.

Vol. 4096: E. Sha, S.-K. Han, C.-Z. Xu, M.H. Kim, L.T.
Yang, B. Xiao (Eds.), Embedded and Ubiquitous Com-
puting. XXIV, 1170 pages. 2006.

Vol. 4095: S. Nolfi, G. Baldassare, R. Calabretta, D.
Marocco, D. Parisi, J.C. T. Hallam, O. Miglino, J.-A.
Meyer (Eds.), From Animals

to Animats 9. XV, 869 pages. 2006. (Sublibrary LNAI).

Vol. 4094: O. H. Ibarra, H.-C. Yen (Eds.), Implementa-
tion and Application of Automata. XIII, 291 pages. 2006.

Vol. 4093: X. Li, O.R. Zaiane, Z. Li (Eds.), Advanced
Data Mining and Applications. XXI, 1110 pages. 2006.
(Sublibrary LNAI).

Vol. 4092: J. Lang, F. Lin, J. Wang (Eds.), Knowledge
Science, Engineering and Management. XV, 664 pages.
2006. (Sublibrary LNAI).

Vol. 4091: G.-Z. Yang, T. Jiang, D. Shen, L. Gu, J. Yang
(Eds.), Medical Imaging and Augmented Reality. XIII,
399 pages. 2006.

Vol. 4090: S. Spaccapietra, K. Aberer, P. Cudré-Mauroux

(Eds.), Journal on Data Semantics VI. XI, 211 pages.
2006.

Vol. 4089: W. Lowe, M. Siidholt (Eds.), Software Com-
position. X, 339 pages. 2006.

Vol. 4088: Z.-Z. Shi, R. Sadananda (Eds.), Agent Com-
puting and Multi-Agent Systems. XVII, 827 pages.
2006. (Sublibrary LNAI).

Vol. 4087: F. Schwenker, S. Marinai (Eds.), Artificial
Neural Networks in Pattern Recognition. IX, 299 pages.
2006. (Sublibrary LNAI).

Vol. 4085: J. Misra, T. Nipkow, E. Sekerinski (Eds.), FM
2006: Formal Methods. XV, 620 pages. 2006.

Vol. 4084: M.A. Wimmer, H.J. Scholl, A. Gronlund,
K.V. Andersen (Eds.), Electronic Government. XV, 353
pages. 2006.

Vol. 4083: S. Fischer-Hiibner, S. Furnell, C. Lambri-
noudakis (Eds.), Trust and Privacy in Digital Business.
XIII, 243 _pages. 2006.

Vol. 4082: K. Bauknecht, B. Proll, H. Werthner (Eds.),
E-Commerce and Web Technologies. XIII, 243 pages.
2006.

Vol. 4081: A. M. Tjoa, J. Trujillo (Eds.), Data Warehous-
ing and Knowledge Discovery. XVII, 578 pages. 2006.

Vol. 4080: S. Bressan, J. Kiing, R. Wagner (Eds.),
Database and Expert Systems Applications. XXI, 959
pages. 2006.

Vol. 4079: S. Etalle, M. Truszczyriski (Eds.), Logic Pro-
gramming. X1V, 474 pages. 2006.

Vol. 4077: M.-S. Kim, K. Shimada (Eds.), Geometric
Modeling and Processing - GMP 2006. X VI, 696 pages.
2006.

Vol. 4076: F. Hess, S. Pauli, M. Pohst (Eds.), Algorithmic
Number Theory. X, 599 pages. 2006.

Vol. 4075: U. Leser, F. Naumann, B. Eckman (Eds.),
Data Integration in the Life Sciences. XI, 298 pages.
2006. (Sublibrary LNBI).

Vol. 4074; M. Burmester, A. Yasinsac (Eds.), Secure Mo-
bile Ad-hoc Networks and Sensors. X, 193 pages. 2006.

Vol. 4073: A. Butz, B. Fisher, A. Kriiger, P. Olivier (Eds.),
Smart Graphics. XI, 263 pages. 2006.

Vol. 4072: M. Harders, G. Székely (Eds.), Biomedical
Simulation. XI, 216 pages. 2006.

Vol. 4071: H. Sundaram, M. Naphade, J.R. Smith, Y. Rui
(Eds.), Image and Video Retrieval. XII, 547 pages. 2006.

Vol. 4070: C. Priami, X. Hu, Y. Pan, T.Y. Lin (Eds.),
Transactions on Computational Systems Biology V. IX,
129 pages. 2006. (Sublibrary LNBI).

Vol. 4069: FJ. Perales, R.B. Fisher (Eds.), Articulated
Motion and Deformable Objects. XV, 526 pages. 2006.

Vol. 4068: H. Schirfe, P. Hitzler, P. @hrstrgm (Eds.),
Conceptual Structures: Inspiration and Application. XI,
455 pages. 2006. (Sublibrary LNAI).

Vol. 4067: D. Thomas (Ed.), ECOOP 2006 — Object-
Oriented Programming. XIV, 527 pages. 2006.

Vol. 4066: A. Rensink, J. Warmer (Eds.), Model Driven
Architecture — Foundations and Applications. XII, 392
pages. 2006.

Vol. 4065: P. Perner (Ed.), Advances in Data Mining. XI,
592 pages. 2006. (Sublibrary LNAI).

Vol. 4064: R. Biischkes, P. Laskov (Eds.), Detection of
Intrusions and Malware & Vulnerability Assessment. X,
195 pages. 2006.

Vol. 4063: 1. Gorton, G.T. Heineman, I. Crnkovic, H.W.
Schmidt, J.A. Stafford, C.A. Szyperski, K. Wallnau
(Eds.), Component-Based Software Engineering. XI,
394 pages. 2006.

Vol. 4062: G. Wang, J.E. Peters, A. Skowron, Y. Yao
(Eds.), Rough Sets and Knowledge Technology. XX, 810
pages. 2006. (Sublibrary LNAI).

Preface

This volume contains the proceedings of the international workshop WS-FM
(Web Services and Formal Methods) held at Vienna University of Technology,
Vienna, Austria, during September 8-9, 2006.

The International Workshop on Web Services and Formal Methods aims to
bring together researchers working on Web services and formal methods in or-
der to activate a fruitful collaboration in this direction of research. This, poten-
tially, could also have a great impact on the current standardization phase of
Web service technologies. The main topics of the conference include: protocols
and standards for WS (SOAP, WSDL, UDDI, etc.); languages and descripion
methodologies for Choreography/Orchestration/Workflow (BPML, XLANG
and BizTalk, WSFL, WS-BPEL, etc.); coordination techniques for WS (trans-
actions, agreement, coordination services, etc.); semantics-based dynamic WS
discovery services (based on Semantic Web/ontology techniques or other se-
mantic theories); security, performance evaluation and quality of service of WS;
semi-structured data and XML related technologies; comparisons with different
related technologies/approaches.

This third edition of the workshop (WS-FM 2006) featured 15 papers se-
lected among 40 submissions after a rigorous review process by international
reviewers and three invited talks by Wil van der Aalst (Eindhoven University
of Technology, The Netherlands), Roberto Bruni (University of Pisa, Italy) and
Schahram Dustdar (Vienna University of Technology, Austria). These contribu-
tions brought an additional dimension to the technical and the scientific merit
of the workshop. This volume of the proceedings contains the 15 selected papers
and three papers related to the invited talks.

WS-FM 2006 was held as an official event of “The Process Modelling Group”
(aresarch group which promotes study and experimentation in business processes
whose members mainly work in academia, for software companies or as part of
standards bodies) and in conjunction with the 4th International Conference on
Business Process Management (BPM 2006).

We owe special thanks to all members of the Program Committee of WS-FM
2006 and their sub-referees for their work. Finally, our thanks go to the University
of Technology of Vienna for hosting the workshop and for their support in the
workshop organization.

September 2006 Mario Bravetti
Manuel Nurtiez
Gianluigi Zavattaro

Program Committee

Co-chairs

Mario Bravetti
Gianluigi Zavattaro

Organization

University of Bologna (Italy)
University of Bologna (Italy)

Board of “The Process Modelling Group”

Wil van der Aalst
Rob van Glabbeek

Keith Harrison-Broninski

Robin Milner
Roger Whitehead

Other PC Members

Marco Aiello
Farhad Arbab
Matteo Baldoni
Jean-Pierre Banatre
Boualem Benatallah
Karthik Bhargavan
Roberto Bruni
Michael Butler
Fabio Casati
Rocco De Nicola,
Marlon Dumas
Schahram Dustdar
Gianluigi Ferrari
Jose Luiz Fiadeiro
Stefania Gnesi
Reiko Heckel
Kohei Honda
Nickolas Kavantzas
Leila Kloul

Cosimo Laneve
Mark Little
Natalia Lépez
Roberto Lucchi
Jeff Magee

Eindhoven Univ. of Technology, The Netherlands
NICTA, Sydney, Australia

Role Modellers Ltd.

Cambridge University, UK

Office Futures

University of Trento (Italy)

CWI, The Netherlands

University of Turin, Italy

University of Rennes 1 and INRIA, France
University of New South Wales, Australia
Microsoft Research Cambridge, UK
University of Pisa, Italy

University of Southampton, UK

HP Labs, USA

University of Florence, Italy

Queensland University of Technology, Australia
Vienna University of Technology, Austria
University of Pisa, Italy

University of Leicester, UK

CNR Pisa, Italy

University of Leicester, UK

Queen Mary, University of London, UK
Oracle Co., USA

Université de Versailles, France
University of Bologna, Italy

Arjuna Technologies Limited, UK
University Complutense of Madrid, Spain
University of Bologna, Italy

Imperial College London, UK

VIII Organization

Fabio Martinelli
Manuel Mazzara
Ugo Montanari
Shin Nakajima
Manuel Nunez
Fernando Pelayo
Marco Pistore
Wolfgang Reisig
Vladimiro Sassone
Marjan Sirjani
Friedrich Vogt

Martin Wirsing

Additional Referees

Massimo Bartoletti
Marzia Buscemi
Samuele Carpineti
Diego Cazorla
Corina Cirstea
Sara Corfini
Fernando Cuartero
Alberto de la Encina
Berndt Farwer
Fatemeh Ghassemi
Dieter Gollmann

CNR Pisa, Italy

University of Bolzano, Italy

University of Pisa, Italy

National Institute of Informatics and JST, Japan
University Complutense of Madrid, Spain
University of Castilla-La Mancha, Albacete, Spain
University of Trento, Italy

Humboldt University, Berlin, Germany

University of Sussex, UK
Tehran University, Iran

Technical University of Hamburg-Harburg,

Germany

Ludwig Maximilians University Munich,

Germany

Stephanie Kemper
Natallia Kokash
Alessandro Lapadula
Luis Llana

Mieke Massink
Ilaria Matteucci
Hernan Melgratti
Sebastian Menge
Mercedes G. Merayo
Leonardo Mezzina
Luca Padovani

Organizing Committee

Chair

Manuel Nunez

Local Chair
Friedrich Neubarth

Other Members

Mario Bravetti
Gregorio Diaz
Alberto de la Encina
Roberto Lucchi
Mercedes G. Merayo
Gianluigi Zavattaro

Marinella Petrocchi
Stephan Reiff-Marganiec
Bilel Remmache
Shamim Ripon

Ismael Rodriguez
Francesco Tiezzi

Angelo Troina

Emilio Tuosto

Divakar Yadav

Uwe Zdun

University Complutense of Madrid, Spain

Austrian Research Institute for Artificial

Intelligence

University of Bologna, Italy

Universidad Castilla-La Mancha, Spain
Universidad Complutense de Madrid, Spain
University of Bologna, Italy

Universidad Complutense de Madrid, Spain
University of Bologna, Italy

Table of Contents

I Invited Papers

DecSerFlow: Towards a Truly Declarative Service Flow Language 1
W.M.P. van der Aalst, M. Pesic

Service QoS Composition at the Level of Part Names 24
Marco Aiello, Florian Rosenberg, Christian Platzer,
Agata Ciabattoni, Schahram Dustdar

SCC: A Service Centered Calculus.t 38
M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M. Loreti,
F. Martins, U. Montanari, A. Ravara, D. Sangiorgi, V. Vasconcelos,
G. Zavattaro

II Contributed Papers

Computational Logic for Run-Time Verification of Web Services
Choreographies: Exploiting the SOCS-SITool 58
Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma,
Paola Mello, Marco Montali, Sergio Storari, Paolo Torroni

Semantic Querying of Mathematical Web Service Descriptions 73
Rebhi Baraka, Wolfgang Schreiner

Verified Reference Implementations of WS-Security Protocols........... 88
Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon

From BPEL Processes to YAWL Workflows 107
Antonio Brogi, Razvan Popescu

Translating Orc Features into Petri Nets and the Join Calculus 123
Roberto Bruni, Herndn Melgratti, Emilio Tuosto

Dynamic Constraint-Based Invocation of Web Services................. 138
Diletta Cacciagrano, Flavio Corradini, Rosario Culmone,
Leonardo Vito

X Table of Contents

A Formal Account of Contracts for Web Services......................
S. Carpineti, G. Castagna, C. Laneve, L. Padovani

Execution Semantics for Service Choreographies
Gero Decker, Johannes Maria Zaha, Marlon Dumas

Analysis and Verification of Time Requirements Applied to the Web

Services CompoOsIitIonttt e
Gregorio Diaz, Maria-Emilia Cambronero, M. Llanos Tobarra,
Valentin Valero, Fernando Cuartero

A Formal Approach to Service Component Architecture
José Luiz Fiadeiro, Antonia Lopes, Laura Bocchi

Evaluating the Scalability of a Web Service-Based Distributed
e-Learning and Course Management System
Stephen Gilmore, Mirco Tribastone

Choreography Conformance Analysis: Asynchronous Communications
and Information Alignment0
Raman Kazhamiakin, Marco Pistore

Application of Model Checking to AXML System’s Security:
A Case Study . ..ot
Il-Gon Kim, Debmalya Biswas

Towards a Unifying Theory for Web Services Composition
Manuel Mazzara, Ivan Lanese

Towards the Formal Model and Verification of Web Service

Choreography Description Language...........o,
Zhao Xiangpeng, Yang Hongli, Qiu Zongyan

Author Index

DecSerFlow: Towards a Truly Declarative
Service Flow Language

W.M.P. van der Aalst and M. Pesic

Department of Information Systems, Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands
w.m.p.v.d.aalst@tm.tue.nl, m.pesic@tm.tue.nl

Abstract. The need for process support in the context of web services
has triggered the development of many languages, systems, and stan-
dards. Industry has been developing software solutions and proposing
standards such as BPEL, while researchers have been advocating the
use of formal methods such as Petri nets and m-calculus. The languages
developed for service flows, i.e., process specification languages for web
services, have adopted many concepts from classical workflow manage-
ment systems. As a result, these languages are rather procedural and
this does not fit well with the autonomous nature of services. Therefore,
we propose DecSerFlow as a Declarative Service Flow Language. Dec-
SerFlow can be used to specify, enact, and monitor service flows. The
language is extendible (i.e., constructs can be added without changing
the engine or semantical basis) and can be used to enforce or to check the
conformance of service flows. Although the language has an appealing
graphical representation, it is grounded in temporal logic.

Keywords: Service flows, web services, workflow management, flexibil-
ity, temporal logic.

1 Introduction

The Business Process Ezecution Language for Web Services (BPEL4WS, or
BPEL for short) has become the de-facto standard for implementing processes
based on web services [7]. Systems such as Oracle BPEL Process Manager,
IBM WebSphere Application Server Enterprise, IBM WebSphere Studio Appli-
cation Developer Integration Edition, and Microsoft BizTalk Server 2004 support
BPEL, thus illustrating the practical relevance of this language. Although in-
tended as a language for connecting web services, its application is not limited
to cross-organizational processes. It is expected that in the near future a wide
variety of process-aware information systems [8] will be realized using BPEL.
Whilst being a powerful language, BPEL is of a procedural nature and not very
different from classical workflow languages e.g., the languages used by systems
such as Staffware, COSA, SAP Workflow, and IBM WebSphere MQ Workflow
(formerly know as FlowMark). Also other languages proposed in the context of
web services are of a procedural nature, e.g., the Web Services Choreography

M. Bravetti, M. Nuiies, and G. Zavattaro (Eds.): WS-FM 2006, LNCS 4184, pp. 1-23, 2006.
© Springer-Verlag Berlin Heidelberg 2006

2 W.M.P. van der Aalst and M. Pesic

Description Language (WS-CDL) [16]. In this paper, we will not discuss these
languages in detail. The interested reader is referred to [2,3,20] for a critical
review of languages like BPEL. Instead, we will demonstrate that it is possible
to use a more declarative style of specification by introducing DecSerFlow: a
Declarative Service Flow Language.

To explain the difference between a procedural style and a declarative style
of modeling, we use a simple example. Suppose that there are two activities
A and B. Both can be executed multiple times but they ezclude each other,
i.e., after the first occurrence of A it is not allowed to do B anymore and after
the first occurrence of B it is not allowed to do A. The following execution se-
quences are possible based on this verbal description: [] (the empty execution
sequence), [A], [B], [A,A], [B,B], etc. In a procedural language it is difficult to
specify the above process without implicitly introducing additional assumptions
and constraints. In a procedural language one typically needs to make a choice
with respect to whether no activities are to be executed, only A activities are
to be executed, or only B activities are to be executed. Moreover, the num-
ber of times A or B needs to be executed also has to be decided. This means
that one or more decision activities need to be executed before the execution
of “real” activities can start. (Note that this is related to the Deferred Choice
pattern described in [4].) The introduction of these decision activities typically
leads to an over-specification of the process. Designers may be tempted to make
this decision before the actual execution of the first A or B. This triggers the
following two questions: (1) “How is this decision made?” and (2) “When is
this decision made?”. The designer may even remove the choice altogether and
simply state that one can only do A activities. Using a more declarative style
can avoid this over-specification. For example, in Linear Temporal Logic (LTL)
[11,12,13] one can write 7(CA A <B). This means that it cannot be the case
that eventually A is executed and that eventually B is executed. This shows
that a very compact LTL expression (-(CA A ©B)) can describe exactly what
is needed without forcing the designer to specify more than strictly needed. Un-
fortunately, languages like LTL are difficult to use for non-experts. Therefore,
we have developed a graphical language (DecSerFlow) that allows for the easy
specification of processes in a declarative manner. DecSerFlow is mapped onto
LTL. The innovative aspects of our approach based on DecSerFlow are:

|

DecSerFlow allows for a declarative style of modeling which is highly relevant

in the context of service flows (unlike languages like BPEL).

— Through the graphical representation of DecSerFlow this language is easy
to use and we avoid the problems of textual languages like LTL.

— We use LTL not only for the verification of model properties: we also use
the LTL formulas generated by DecSerFlow to dynamically monitor services
and to realize an enactment engine.

— DecSerFlow is an extendible language (i.e., we supply an editor to extend the

language with user-defined graphical constructs without the need to modify

any part of the system).

DecSerFlow: Towards a Truly Declarative Service Flow Language 3

— DecSerFlow can be used to specify two types of constraints: hard constraints
and soft constraints. Hard constraints are enforced by the engine while soft
constraints are only used to warn before the violation takes place and to
monitor observed violations.

DecSerFiow
model containing
four activities

hard LTL
hard constraint constraints
(response)

n [I(A -> <>C)
hard constraint not(<>A and <>B) »| enactment | o >
{not co-existence) engine - .
enable
disable web
oL start services/
soft constraint Qonsirais; complete SOAP
(responded || wam messages
existence)
&0> <28 | monitoring
> <t
n tool register
design-time mapping run-time

Fig. 1. Overview of the role played by DecSerFlow in supporting services flows

Figure 1 provides an overview of the way we envision DecSerFlow to be used.
At design-time, a graphical model is made using the DecSerFlow notation. (Note
that at design-time users can also add new modeling elements - types of con-
straints.) The left-hand side of Figure 1 shows a process composed of four ac-
tivities, A, B, C, and D. Moreover, three constraints are shown. The connection
between A and C means that any occurrence of A should eventually be followed
by at least one occurrence of C (i.e., O(A — <C) in LTL terms). The con-
nection between A and B means that it cannot be the case that eventually A
is executed and that eventually B is executed. This is the constraint described
before, i.e., 7(¢A A ©B) in LTL terms. The last constraint connecting D and
B is a soft constraint. This constraint states that any occurrence of D implies
also the occurrence of B (before or after the occurrence of D), e.g., [B,D,D,D,D],
[D,D,D,B], and [B,B,B] are valid executions. The LTL formulation of this con-
straint is 0D — <OB.

As Figure 1 shows, it is possible to automatically map the graphical model
onto LTL formulas. These formulas can be used by the enactment engine to
control the service flow, e.g., on the basis of hard constraints the engine can
allow or prohibit certain activities and on the basis of soft constraints warnings
can be issued. The soft constraints can also be used by the monitoring tool to
detect and analyze violations.

4 W.M.P. van der Aalst and M. Pesic

Currently, we have implemented a graphical editor and the mapping of the
editor to LTL. This editor supports user-defined notations as described before.
We are currently investigating different ways to enact LTL formulas and in this
paper we described our current efforts. Although we do not elaborate this this in
this paper, our implementation will also incorporate data as is show in Figure 1.
Data is used for routing purposes by making constraints data dependent, i.e., a
constraint only applies if its guard evaluates to true. Moreover, in the context of
the ProM (Process Mining) framework [6,18] we have developed an LTL checker
[1] to compare actual behavior with specified behavior. The actual behavior can
be recorded by a dedicated process engine. However, it can also be obtained by
monitoring SOAP messages as described in [3].

The approach described in Figure 1 is not limited to service flows. It can
be applied in any context where autonomous entities are executing activities.
These autonomous entities can be other organizations but also people or groups
of people. This is the reason that DecSerFlow has a “sister language” named
ConDec which aims at supporting teamwork and workflow flexibility [17]. Both
languages/applications share the same concepts and tools.

The remainder of this paper is organized as follows. Section 2 introduces
the DecSerFlow language. Then, a non-trivial example is given in Section 3.
Section 4 discusses different ways to construct an enactment (and monitoring)
engine based on DecSerFlow. Finally, Section 5 concludes the paper by discussing
different research directions.

2 DecSerFlow: A Declarative Service Flow Language

Languages such as Linear Temporal Logic (LTL) [11,12,13] allow for the a more
declarative style of modeling. These languages include temporal operators such
as next-time (OF), eventually (OF), always (OF), and until (F UG). However,
such languages are difficult to read. Therefore, we define an extendible graphical
syntax for some typical constraints encountered in service flows. The combina-
tion of this graphical language and the mapping of this graphical language to
LTL forms the Declarative Service Flow (DecSerFlow) Language . We propose
DecSerFlow for the specification of a single service, simple service compositions,
and more complex choreographies.

Developing a model in DecSerFlow starts with creating activities. The no-
tion of an activity is like in any other workflow-like language, i.e., an activity
is atomic and corresponds to a logical unit of work. However, the nature of the
relations between activities in DecSerFlow can be quite different than in tradi-
tional procedural workflow languages (like Petri nets and BPEL). For example,
places between activities in a Petri net describe causal dependencies and can
be used to specify sequential, parallel, alternative, and iterative routing. Using
such mechanisms it is both possible and necessary to strictly define how the
flow will be executed. We refer to relations between activities in DecSerFlow as
constraints. Each of the constraints represents a policy (or a business rule). At
any point in time during the execution of a service, each constraint evaluates to

DecSerFlow: Towards a Truly Declarative Service Flow Language 5

true or false. This value can change during the execution. If a constraint has the
value true, the referring policy is fulfilled. If a constraint has the value false, the
policy is violated. The execution of a service is correct (according to the Dec-
SerFlow model) at some point in time if all constraints (from the DecSerFlow
model) evaluate to true. Similarly, a service has completed correctly if at the end
of the execution all constraints evaluate to true. The goal of the execution of
any DecSerFlow model is not to keep the values of all constraints true at all
times during the execution. A constraint which has the value false during the
execution is not considered an error. Consider for example the LTL expression
O(A — ©OB) where A and B are activities, i.e., each execution of A is eventually
followed by B. Initially (before any activity is executed), this LTL expression
evaluates to true. After executing A the LTL expression evaluates to false and
this value remains false until B is executed. This illustrates that a constraint
may be temporarily violated. However, the goal is to end the service execution
in a state where all constraints evaluate to true.

To create constraints in DecSerFlow we use constraint templates. Each con-
straint template consists of a formula written in LTL and a graphical represen-
tation of the formula. An example is the “response constraint”, which is denoted
by a special arc connecting two activities A and B. The semantics of such an arc
connecting A and B are given by the LTL expression O(A — ©B), i.e., any
execution of A is eventually followed by (at least one) execution of B. We have
developed a starting set of constraint templates and we will use these templates
to create a DecSerFlow model. This set of templates is inspired by a collection
of specification patterns for model checking and other finite-state verification
tools [9]. Constraint templates define various types of dependencies between ac-
tivities at an abstract level. Once defined, a template can be reused to specify
constraints between activities in various DecSerFlow models. It is fairly easy
to change, remove and add templates, which makes DecSerFlow an “open lan-
guage” that can evolve and be extended according to the demands from different
domains.! In the initial set of constraint templates we distinguish three groups:
(1) “existence”, (2) “relation”, and (3) “negation” templates. Because a tem-
plate assigns a graphical representation to an LTL formula, we will refer to such
a template as a formula.

Before giving an overview of the initial set of formulas and their notation,
we give a small example explaining the basic idea. Figure 2 shows a DecSerFlow
model consisting of four activities: A, B, C, and D. Each activity is tagged with a
constraint describing the number of times the activity should be executed, these
are the so-called “existence formulas”. The arc between A and B is an example
of a “relation formula” and corresponds to the LTL expression discussed before:
O(A — <© B). The connection between C and D denotes another “relation
formula”: & D — <& (, i.e., if D is executed at least once, C is also executed
at least once. The connection between B and C denotes a “negation formula”

! Note that we have developed a graphical editor for DecSerFlow that supports the
creation of user defined templates, i.e., the user can define the graphical representa-
tion of a generic constraint and give its corresponding semantics in terms of LTL.

6 W.M.P. van der Aalst and M. Pesic

(A -> <> B),
A can be i.e., every Ais B is executed
executed an r eventually .| twice
arbitrary number [~ /| followedbyB .=
of times s ;

<D>-><>C, e,
if D is executed
at least once, C
is also executed
at least once.

if A is executed
at least once, C
is never
executed and
vice versa.

|——<> D,ie.Dis
d at least
I— once

Fig. 2. A DecSerFlow model showing some example notations

(the LTL expression is not show here). Note that it is not easy to provide a clas-
sical procedural model (e.g., a Petri net) that allows for all behaviour modeled
Figure 2.

Ezistence Formulas. Figure 3 shows the so-called “existence formulas”. These
formulas define the possible number of executions (cardinality) of an activity. For
example, the first formula is called ezistence. The name and the formula heading
are shown in the first column. From this, we can see that it takes one parameter
(A), which is the name of an activity. The body of the formula is written in LTL
and can be seen in the second column. In this case the LTL expression < (activity
== A) ensures that the activity given as the parameter A will execute at least
once. Note that we write < (activity == A) rather than ¢ (A). The reason is that
in a state we also want to access other properties, i.e., not just the activity name
but also information on data, time, and resources. Therefore, we need to use a
slightly more verbose notation (activity == A). The diagram in the third column
is the graphical representation of the formula, which is assigned to the template.
Parameter A is an activity and it is represented as a square with the name of
the activity. The constraint is represented by a cardinality annotation above the
square. In this case the cardinality is at least one, which is represented by 1..*.
The first group of existence formulas are of the cardinality “N or more”, denoted
by N..* Next, the formula absence ensures that the activity should never execute
in the service. The group of formulas with names absence_N uses negations of
existence_N to specify that an activity can be executed at most N-1 times. The
last group of existence formulas defines an exact number of executions of an
activity. For example, if a constraint is defined based on the formula ezactly_2,
the referring activity has to be executed exactly two times in the service.

Relation Formulas. Figure 4 shows the so-called “relations formulas”. While an
“existence formula” describes the cardinality of one activity, a “relation formula”
defines relation(s) (dependencies) between two activities. All relation formulas

