;i & BOOK 1 ;
7,80
MICROPROCESSOR
. PROGRAMMING

| & INTERFACING

T

BY JOSEPH C. NICHOLS, ELIZABETH A. NICHOLS AND PETER R. RO

Z-80 Microprocessor

Programming & Interfacing

Book 1

by
Elizabeth A. Nichols, Joseph C. Nichols,
and Peter R. Rony

Howard W. Sams & Co., Inc.

4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46268 USA

Copyright © 1979 by Elizabeth A. Nichols, Joseph C. Nichols,
and Peter R. Rony

FIRST EDITION
THIRD PRINTING—1981

All rights reserved. No part of this book shall be

reproduced, stored in a retrieval system, or transmitted

by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher.
No patent liability is assumed with respect to the use

of the information contained herein. While every precaution
has been taken in the preparation of this book, the

publisher assumes no responsibility for errors or omissions.
Neither is any liability assumed for damages resulting

from the use of the information contained herein.

International Standard Book Number: 0-672-21609-4
Library of Congress Catalog Card Number: 79-63822

Printed in the United States of America.

Preface

The microelectronics revolution is here, and gaining momentum.
It all began 30 years ago with the development of the transistor.
The transistor, a physically small, low-power amplifier, replaced the
large, power-hungry vacuum tubes of the first generation computers.
Due to a natural synergism between transistors and digital logic, their
small size and low cost, transistors have become the basic building
blocks for computer circuits. Transistors combine to form gates; gates
combine to form flip flops, counters, adders, and other logic func-
tions; and these, in turn, combine to form the memeory, control, arith-
metic, and logic units which make up the central processing unit
(cpu) of a computer. Thus, the number of transistors in a logic cir-
cuit has become a reasonable measure of its functional complexity.
In 1959, the first integrated circuits consisting of small groups of
planar transistors were developed on thin wafers of silicon or germa-
nium. This began the era of Small Scale Integration (SSI) in which
12 or fewer gates could be incorporated into a single integrated cir-
cuit (IC). Since 1959, the number of transistors in advanced ICs has
been at least doubling every year. Today, circuits containing 262,144
elements are available and the technology is still far from its theo-
retical limits. The Z-80 CPU and support chips, introduced by Zilog
in 1976, represents the state-of-the-art in 8-bit microprocessors. Zilog
is currently developing a successor to the Z-80 line, the Z-8000 se-
ries of cpu and support chips. However, the Z-8000 will be a 16-bit
cpu with computational capacity comparable to mid-range mini-
computers, a significant jump in capability. And this is only the be-
ginning. The real revolution will be manifest in the exponential pro-
liferation of products and services dependent on microelectronics.

This book is one of two volumes on Z-80 microprocessor program-
ming and interfacing. Book 1 is on Z-80 software—assembly and ma-
chine language programming. Book 2 covers interfacing digital cir-
cuits with the Z-80 CPU, PIO, and CTC chips. These books are
laboratory oriented texts that are designed to give an integrated ap-
proach to microcomputer programming and interfacing. The strong
emphasis is on learning through experimentation. Each topic intro-
duced is reinforced with laboratory work that shows not only how
ideas succeed, but also where they fail, and what the pitfalls are.

Book 1 requires no background in computer science, programming,
or digital electronics. Book 2 however, assumes familiarity with the
topics covered in Book 1. In both books, topics are presented in the
order that the authors feel is most conducive to learning in a self-
study environment. Answers are provided for all the exercises, and
every attempt is made to anticipate questions and logical extensions
to the experiments.)

To enhance the laboratory orientation in the books, the experiments
use a sophisticated Z-80-based single-board microcomputer manu-
factured by SGS-ATES, called the Nanocomputer. The Nanocomputer
is an excellent educational computer because it is simple for a novice
to use, but incorporates enough options, flexibility, expandability, and
sophistication to keep the interest of the most experienced user. For
more information on the Nanocomputer, contact SGS-ATES Semi-
conductor Corp., 240 Bear Hill Road, Waltham, MA 02154,

The authors are indebted to many members of the staff at SGS-
ATES in Milano, Italy: R. Baldoni, A. Cattania, B. Facchi, F. Lu-
raschi, C. Wallace, and especially A. Watts whose many ideas and
technical expertise on the Nanocomputer tremendously improved
these books. Also we wish to thank C. Edson and U. Broggi of SGS-
ATES in the USA who greatly expedited progress by acting as liasons
between the US and Italian efforts on this project. Finally, much
credit is due to J. Titus and D. Larsen of the Blacksburg Group for
their efforts in coordinating with Howard W. Sams & Co., Inc. to
bring about the publication of these books.

EL1ZABETH A. NICHOLS
JosepH C. NICHOLS
PETER R. RoNny

Contents

CHAPTER 1

DicitAL CODES ; .
Objectives -— Languages, Commumcatlons and Informauon — Bl-
nary Coding — Bit — Digital Codes — Binary Code — Hexadeci-
mal (HEX) Code — A Note on Notation — Demonstrations —
Demonstration No. 1 — Review

CHAPTER 2

AN INTRODUCTION TO MICROCOMPUTER PROGRAMMING
Objectives — What Is a Computer? — What Is a Microcomputer?
— What Is a Computer Program? — Instructions — Mnemonics —
Instructions — Machine Language — A Simple Program — Mem-
ory — Memory Address — Range of Memory Locations — Hi and
Lo Memory Addresses — Demonstration No. 1 — Review

CHAPTER 3
SoME Z-80 MICROPROCESSOR CPU INSTRUCTIONS . .
Objectives — What Is a Computer Program? — Instructions and

Operations — Multibyte Instructions — Types of Information Stored
in Memory — Operation Code — Data Byte — Device Code — Hi
and Lo Address Bytes — Displacement Byte — What Is a Register?
— General-Purpose Registers — Accumulator — Some Z-80 Instruc-
tions — Instruction Byte Nomenclature — Review

CHAPTER 4

THE NANOCOMPUTER (NBZ80) AND THE SUPER NANO-
COMPUTER (NBZS80S)
Objectives — The Nanocomputer — Central Processmg Umt (CPU)
— Rules for Setting up Experiments — Experiment Instructions
Format — A Word of Caution — Introduction to the Experiments
— Experiment No. 1 — Experiment No. 2 = Experiment No. 3 —
Experiment No. 4 — Experiment No. 5

21

33

47

CHAPTER 5

SoME SIMPLE Z-80 MICROCOMPUTER PROGRAMS . . . 79
Objectives — Review ®f Several Z-80 Instructions — Progrdmmmg
Languages and Listings — Assembly Language Programming — In-
troduction to the Experiments — Experiment No. | — Experiment
No. 2 — Experiment No. 3 — Experiment No. 4 — Experiment No.

5 — Review
CHAPTER 6
REGISTERS, MEMORY, AND DATA TRANSFER . . 99

Objectives — Z-80 Instruction Set — Z-80 Addressing Modes — Sm—
gle Register Load Instructions: Register Addressing Mode LD d.s —
Load Immediate to Register — Register Indirect Load With Accum-
ulator LD A, (rp); LD (rp). A — Load Immediate Extended Pair
LD rp <B3><B2> — Load Extended Pair LLD rp, (addr); LD
(addr). rp — Increment Register — Decrement Register — Jump
if not Zero JP NZ, <B3><B2> — Block Data Transfers LDD,
LDI, LDDR. LDIR — Introduction to the Experimeénts — Experi-
ment No. I — Experiment No. 2 — Experiment No. 3 — Experi-
ment No. 4 — Experiment No. 5§ — Experiment No. 6

CHAPTER 7

7-80 ADDRESSING MODES . . 139
Objectives — What Is an Addrewng Mode’ — Two s Complemenl
Binary Representation — Two's Complement Addition and Subtrac-
tion — The Z-80 Address Modes — Register Addressing — Immedi-
ate Addressing — Immediate Extended Addressing — Register In-
direct Addressing — Extended Addressing — Modified Page Zero
Addressing — Implied Addressing — Bit Addressing — Indexed
Addressing — Relative Addressing — The Instruction Group Tables
— The 16-Bit Load Group — Block Transfer and Exchanges — In-

troduction to the Experiments and Exercises — Review — Experi-
ment No. I — Experiment No. 2 — Experiment No. 3
CHAPTER 8
JUMPS, CALLS, anp RETURNS 175
Objectives — Program Control Transfers — Uncondmondl JUMP
Instructions — Flags and Conditional Jumps — Calls and Returns
— Introduction to the Experiments — Experiment No. 1 — Experi-
ment No. 2 — Experiment No. 3 — Experiment No. 4 — Experi-
ment No. §
CHAPTER 9
LoGiCcAL INSTRUCTIONS . . . 205
What Is a Logical Instruction? — Boolean Al},ehra — Multlbll Op-
erations — NOT — De Morgan’s Theorem — Z-80 Logical Instruc-
tion Group — Complement Accumulator: CPLL. — AND With Ac-

cumulator: AND — Exclusive-or With Accumulator: XorR — OR With
Accumulator: orR — Logical Instructions and External Device Moni-
toring — Introduction to the Experiments — Experiment No. | —
Experiment No. 2 — Review

CHAPTER 10

BiT MANIPULATION, ROTATE AND SHIFT INSTRUCTIONS .
Objectives — Bit, Set, Test and Reset Process — ROTATE and
SHIFT Instruction Group — ROTATE Instructions — SHIFT In-
structions — Introduction to the Experiments — Experiment No. 1
— Experiment No. 2 — Experiment No. 3

CHAPTER 11
ARITHMETIC AND BLOCK SEARCH INSTRUCTION
Objectives — 8-Bit Arithmetic Group — DAA Instruction — 16-Bit
Arithmetic Instructions — CP and Block Search Instructions: CPI,
CPD, CPIR, and CPDR — Introduction to the Experiments —

Experiment No. 1 — Experiment No. 2 — Experiment No. 3 —
Experiment No. 4

APPENDIX A

SuMMARY OF Z-80 Opr CobDESs AND EXECUTION TIMES

APPENDIX B

Z-80 CPU INSTRUCTIONS SORTED BY MNEMONICS

APPENDIX C
Z-80 CPU INSTRUCTIONS SORTED BY Op CODE .

APPENDIX D

COMPUTATION OF EXECUTION TIMES

APPENDIX E

PrRECAUTIONS WHILE HANDLING MOS DEVICES .

APPENDIX F
MASTER SYMBOL TABLE .

APPENDIX G
REFERENCES .
INDEX

223

243

267

279

283

287

291

293

295

297

CHAPTER 1

Digital Codes

INTRODUCTION

Before you begin to program your microcomputer, it is necessary
that you understand how to convert 8-bit binary numbers into hexa-
decimal code, and vice versa, as well as know certain basic facts
about digital codes.

OBJECTIVES

At the completion of this chapter, you will be able to do the fol-
lowing:

Discuss what is meant by the term communication.

Define bit.

Define binary code.

Define digital code.

Define hexadecimal code.

Convert an 8-bit binary number into a two-digit hexadecimal
number.

Convert a two-digit hexadecimal number into a binary number.
Distinguish between the binary, hexadecimal, and decimal count-
ing systems.

List several different digital codes.

List several different two-state devices.

Provide one example where the quantity, bits per second, is a
measure of information flow.

LANGUAGES, COMMUNICATIONS, AND INFORMATION

One of the most important characteristi¢s that any biological orga-
nism (higher order animals) possesses is the ability to communicate

9

with other organisms of the same species. The ability to communicate,
which gives many animal organisms a definite survival advantage—
in the Darwinian sense of the term—is found in most multicellular
creatures, starting with insects and progressing to man. With insects,
there exist several modes of communication, including the dance of
the bee and forms of chemical communication through remarkable
chemical agents called pheromones. Man can communicate with the
aid of his five senses, as illustrated by handicapped individuals who
have lost one or more of their senses but are, nevertheless, highly
communicative with those remaining.

Assuming that an individual wishes to communicate with another
through the sense of hearing and the use of speech, it is clear that
there must be some general agreement concerning how a spoken
sound will be interpreted by the individual who hears it. Over the
centuries, different regions around the world have each developed
their own consensus regarding the meaning of specific sounds and
their transcription onto paper. We call such a consensus a language
or, perhaps, a foreign language. Thousands of different languages
exist, although only a relatively modest number of them are in wide-
spread use. The popularity of a specific language may wax and wane
over the course of several hundred years. Latin, once a dominant
language in Europe, is now considered to be a “dead” language, how-
ever, it clearly has influenced most of the European languages in very
profound ways.

Communication can be defined as the imparting, conveying, or ex-
changing of ideas, knowledge, information, etc. (whether by speech,
writing, or signs).'* It is one of the most important and characteris-
tic activities of mankind. As pointed out by James Martin in his ex-
cellent book, Telecommunications and the Computer,® the capacity
of major telecommunication links, as measured by a quantity called
bits per second, has paralleled the advance of civilization over the
past one hundred years. The capacity of such links has changed from
a rate of 1 bit/second in 1840 to 50,000,000 bits/second in 1970,
i.e., a doubling every 5.08 years. Martin has also pointed out that
the sum total of human knowledge changed very slowly prior to the
relatively recent beginnings of scientific thought. By 1800, it has been
estimated that the sum total was doubling every 50 years; by 1950,
doubling every 10 years; and that by 1970, it will be doubling every
5 years.

A language, which can be defined as the whole body of words and
of methods of combination of words used by a nation, people, or
race,! is just one form of communication. Egyptian hieroglyphics,
choreographic scores, mathematical symbols and equations, Ameri-

* See Appendix G for all references.

10

can Indian smoke signals, the sign language employed by the deaf,
and the Morse code are other forms of communication used by man.

BINARY CODING

The “information explosion” would have inundated mankind, at
least in the more advanced countries, had it not been for the use of
Two-State Coding to represent all kinds of information, such as the
ten decimal numerals (0O through 9), the twenty-six letters of the
English alphabet (A through Z), operations, symbols, motions, and
the like. We call such two-state coding Off-On or binary coding.
Binary coding can be represented or manifested by any type of two-
state device, such as an on or off light, an open or closed switch, a
punched or nonpunched computer card, a “north” or “south” mag-
netized magnetic core or region of magnetic tape or disc; two differ-
ent voltage levels, two different current levels, two different frequen-
cies; the words YES and NO; or the abstract symbols 0 (off) and 1
(on). The importance of binary coding resides in the fact that it is
possible to construct devices that will change state very quickly, in
times as fast as 5 nanoseconds (0.000000005 second). Such a device
could, in principle, manipulate, transmit, or receive information at
the rate of 200 million bits per second. Thirty-two such devices, op-
erating simultaneously, could manipulate 6.4 billion bits per second.
This is the basic capability that has permitted society to store, ma-
nipulate, and communicate enormous quantities of information.

BIT

The elementary unit of information is called the bit, which is
an abbreviation for BInary digiT. You can think of a bit as being a
light bulb that can be lit (on) or unlit (off) at any given time. Thus,
a bit can be pictured as a light bulb that is ON or a light bulb that
is OFF. Rather than drawing pictures of light bulbs, we can repre-
sent each bulb that is in the lit state by the symbol 1 and each bulb
in the unlit state by the symbol O.

So, a bit is equal to one binary decision, or the designation of one
of two possible and equally likely values or states (such as O or 1).

Information is typically represented by a series of bits. Thus,

1000
represents decimal 8 in binary code. The series of bits,

11000001

represents the letter A in 8-bit ASCII cede. We shall discuss these
two codes shortly.

n

DIGITAL CODES

A digital code is defined as a system of symbols that represent data
values and make up a speEial language that a computer or a digital
circuit can understand and use.? Digital codes can be considered
to be the digital “languages” that permit information to be stored,
manipulated, and communicated. Just as there are numerous spoken
languages, there also exists a variety of digital codes. Such codes can
be subdivided into several important categories:

Category 1. Codes employed by electronic circuitry to perform var-
ious digital operations. Example: binary code.

Category 2. Codes employed to convert the decimal numbers 0
through 9 into digital form. Examples: binary code, binary
coded decimal (bcd), and gray code.

Category 3. Codes employed to convert decimal numbers, the 26-
letter English alphabet, symbols, and operations into digital
form. Examples: ASCII code, EBCDIC code, and Baudot code.

Category 4. Instruction codes employed by large computers, mini-
computers, and microcomputers that cause the computers to
perform a prescribed sequence of operations. Examples: IBM
370 instruction code, PDP 8/E instruction code, Z-80 instruc-
tion code.

In this series of modules, we shall pay particular attention to four
codes: binary code, binary coded decimal (bcd), ASCII code, and
the instruction code for the Z-80 microprocessor chip.

BINARY CODE

The simplest digital code is a two-state, or binary, code that con-
sists of a O (off) and a 1 (on) state. We call these two states [ogic 0
and logic 1. In binary code, decimal 0 is represented by a logic O and
decimal 1 by a logic 1. This should be quite clear. How, on the other
hand, are higher decimal numbers, such as 3, 17, 568, etc., repre-
sented using binary code? The answer is that we use a series of bits
to build a binary counting system that is formed on a base, or radix,
of two. For example, the binary number 11101, where the subscript
(2) represents the binary counting system, is equivalent to

11101 (2) = (1X2%*4) + (1 X2%*3) + (1X2%*2) + (0X2**1) + (1X2**0) = 29 (10)
where you should keep in mind that A**B is equivalent to AP.
Therefore,

2**4 = 16 in decimal notation = 164,
2**3 = 8 in decimal notation = 8y,
2*¥*2 = 4 in decimal notation = 4,

2*¥*%¥] = 2 in decimal notation = 24
2*¥*) = 1 in decimal notation = 14,

Therefore,
11101 (2) = 16 (10) + 8(10) + 4(10) + 0 + 1(10) = 29 (10)

where the subscript (10) associated with these numbers represents
the decimal counting system, a system that is formed on a base, or
radix, of 10. A brief table follows that allows you to convert simple
decimal numbers into binary numbers.

Decimal Number Binary Number

0000
0001
0010
0011
0100
0101
0110
o111
1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111
16 10000

@NOO A WN —~O

Thus, a series of four binary digits, or bits, can represent any of
sixteen different decimal numbers ranging from zero to fifteen. Deci-
mal numbers larger than fifteen require additional bits, as shown in
the following table:

. Decimal Number Binary Number
0 0
1 1
2 10
3 11
4 100
7 111
8 1000
15 1
16 10000
31 1mnm
32 100000
63 11111
64 1000000
127 1111111
128 10000000
255 RRRRRRARA]
256 100000000

13

511 11I1n
512 1000000000
1023 1111111111

1024 10000000000
2047 IRRRRARRAREI
2048 100000000000
4095 [ARRRRRARRRN
4096 1000000000000
8191 IRRRRRRRARREN
8192 10000000000000
16,383 IRRRRARARRRERE
16,384 100000000000000
32,767 [RRRARRARRRAREN
32,768 1000000000000000

65,535 IRRRRRRERRARARARNI

Therefore, an 8-bit binary number can encode two hundred and
fifty-six different decimal numbers, ranging from O to 255,,, or two
hundred and fifty-six different “things,” no matter what they may be
(instructions, devices, pulses, etc.). The Z-80 is a microprocessor
chip that has a 16-bit memory address and an 8-bit I/O device word.
This means that it can directly address 65,536 different memory lo-
cations and can generate at least 256 different I/O pulses or device
addresses.

HEXADECIMAL (HEX) CODE

It can be difficult to remember binary numbers that contain many
bits. For example, can you remember the following 8-bit binary
number,

10011101

after having looked at it for only one second? Quick, cover it up or
look away! Consider also the problem of remembering a list of such
8-bit numbers:

——— O
oo o~
—_—_— —
oo — 0O

0
1
1
1

—_—O — -
O — = —
—_—0 0 —

You probably will conclude that there must be a better way to
remember 8-bit binary numbers. We are using 8-bit numbers here
because you will encounter them frequently when you begin to pro-
gram the 8-bit Z-80 microcomputer.

One approach to remembering multi-bit binary numbers is the use
of hexadecimal code. The term hex is simply an abbreviation for the
word hexadecimal. Hexadecimal code refers to the hexadecimal
counting system, a system that is formed on a base, or radix, of 16.
The hexadecimal counting system consists of sixteen different sym-

14

bols: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, and F. Just as we did with deci-
mal numbers, it is possible to convert hexadecimal numbers into bi-
nary numbers:

Decimal Number Hex Number Binary Number
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
[} 6 0110
7 7 0111
8 8 1000
9 9 1001

10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1T
16 10 0001 0000
17 11 0001 0001
18 12 0001 0010
19 13 0001 0011
20 14 0001 0100
21 15 0001 0101
22 16 0001 0110
23 17 0001 0111
24 18 0001 1000
32 20 0010 0000
40 28 0010 1000
48 30 0011 0000
56 38 0011 1000
63 3F 0011 1111

We have grouped the 8-bit binary numbers into two groups of four
bits each to help you understand how the hexadecimal number to bi-
nary number conversion was made. While the space between each
4-bit group does not affect the value of the number, it does make the
binary number easier to read and has become a standard convention.

We now address the question of how to convert an 8-bit binary
number into hex code. The procedure to accomplish this conversion
requires three steps:

1. Write down the full 8-bit binary number.
2. Split this 8-bit binary number into two groups with four binary
digits in each group.
3. Substitute the equivalent hex digit
0,1,2,3,4,5,6,7,8,9,A,8,C,D,EF

for each group of four bits.

Having done this you will have converted an 8-bit binary number into
a two-digit hex code. Each group of four binary digits is converted
independently of the other.

As an example, consider the 8-bit binary number,
10011101

First, split this binary number into two groups of four binary digits
each

1001 1101

Finally, substitute the equivalent hex digit for each of these two
groups.

9D

This is the correct answer, 9D (16), where the subscript (16) means
“relative to” the hexadecimal counting system. Some additional hex

numbers and their corresponding 8-bit binary numbers are listed
below:

Decimal Number Binary Number Hex Number
64 0100 0000 40
72 0100 1000 48
73 0100 1001 49
74 0100 1010 4A
96 0110 0000 60
120 0111 1000 78
127 o111 11 7F
128 1000 0000 80
160 1010 0000 AQ
184 1011 1000 B8
191 1011 1111 BF
248 1111 1000 F8
255 1111 1 FF

A NOTE ON NOTATION

It may have occurred to you that dealing with all of these different
methods of number representation—binary, hex, and decimal—that
there is a possibility for some confusion. For example, the number 10
can be a decimal or a hex or a binary number. To remedy this prob-
lem, whenever there is any possibility for ambiguity, all hexadecimal
numbers will be followed by the letter H, e.g., 10H, all decimal num-
bers will be followed by a period or decimal point, e.g., 10., and all
binary numbers will appear without any special notation, e.g., 10 or
0110.

16

