SHIFT OISK E

REG ADR -

[:

ADR / .

FORTRAN with Pronlemnsul

2 1 -, stomscsmer FETCH REFER CHNG san
1 PROT sy L) Al 2 3 4 w ’n i " -

MAIN STORAGE
°

:uNOLE cyC

@ waRD STOP I

[T MPX CHAN @

@ CONTROL STORAGE \Y INSTRUGTION STEP &

@ DATA STOR

COn:
o L 1TOUNIER @ o VQ CHAN 1 @ 4 fc.%a-}a © BYIE Cf) \
CTAL WOHD ADR @ | 9 1COUNTER i CHAN 2 sg’,‘S;%‘é‘G‘s /
: 4 ‘j A £
CTRAL w > d g =
ADR 1F A8 DATA COMP TRAP — CHA z 1
n R il AN 4 Nt S o /
-~ 7’/ % ;
~ l: <
. T)
5 ~. 3 f !
) " >~ ¢
A /,‘ :)
E I‘ I. [
!
IR
> : | ‘

FORTRAN with Problem Solving:
A Structured Approach

Robert J. Bent
George C. Sethares

Bridgewater State College

bl

Brooks/Cole Publishing Company

Monterey, California

Dedicated to Costas H. Sethares
and to the memory of

Mary C. Sethares

Catherine A. Bent

John J. Bent

Brooks/Cole Publishing Company
A Division of Wadsworth, Inc.

© 1981 by Wadsworth, Inc., Belmont, California 94002.

All rights reserved.

No part of this book may be reproduced, stored in a retrieval system,
or transcribed, in any form or by any means—electronic,
mechanical, photocopying, recording, or otherwise—

without the prior written permission of the publisher,

Brooks/Cole Publishing Company, Monterey, California 93940,

a division of Wadsworth, Inc.

Printed in the United States of America

10 9 87 6 5 4 3 2

Library of Congress Cataloging in Publication Data
Bent, Robert J 1934
FORTRAN with problem solving.

Includes index.
1. FORTRAN (Computer program language) 2. Problem

solving. I. Sethares, George C., 1930- joint
author. II. Title.
QA76.73.F25B46 001.64'24 80-28581

ISBN 0-8185-0436-6

Acquisition Editor: James F. Leisy, Jr.

Manuscript Editor: Kirk M. Sargeant

Production Editor: Cece Munson

Interior Design: Katherine Minerva

Cover Design and Photo: Stan Rice

Illustrations: VMH Visual Communications

Typesetting: Graphic Typesetting Service, Los Angeles, California

Preface

This book is intended for an audience with no prior programming experience. A mathematics back-
ground of elementary algebra is sufficient for most of the material. The many worked-out examples illustrate
how the FORTRAN programming language can be used both in a data-processing and in a scientific
environment. The examples and the numerous problem sets are drawn from a wide range of application
areas, including business, economics, personal finance, the social and natural sciences, mathematics, and
statistics.

We wrote this book with two principal goals in mind. First, we felt it important to present the elements
of FORTRAN so that meaningful computer programs could be written at the earliest possible time. We
adhere to the notion that one learns by doing. As a result, problem solving is emphasized from the very
beginning, and the various aspects of the FORTRAN language are introduced only as needed. Our second
goal was to write a book that would serve as a general introduction to computer programming, not just to
a programming language. Simply describing a variety of computer applications and ways to go about writing
FORTRAN programs for these applications does not constitute an introduction to programming. What is
required is a consideration of the entire programming process. The approach we have taken toward this
objective is to introduce programming principles only as they can be understood and appreciated in the
context of the applications being considered. For example, a beginner can easily appreciate the need to
identify what values must be input and what form the output should take. Hence, these steps are introduced
early. On the other hand, the value of modularization—that is, breaking down a long and possibly complex
task into more manageable subtasks—is not so easily grasped in the context of the straightforward pro-
gramming problems first encountered. As natural as modularization may appear to an experienced program-
mer, a beginner must “see” its usefulness before being convinced of its value. Thus, although several of the
early examples illustrate the method of problem segmentation in very simple programming situations, it is
not discussed as a general programming principle until later in the book.

Vi

e

3

&

e
ATy

230

v

CONTENTS

All FORTRAN programs appearing in this text conform to the American National Standards Institute
(ANSI) document, ANSI X3.9-1978, commonly referred to as FORTRAN 77. We have taken considerable
care to avoid those parts of FORTRAN 77 that are not widely implemented or that are not essential to
writing “good” programs. We have used the IF-THEN and IF-THEN-ELSE statements. Although they
are not implemented on older FORTRAN systems, they represent a major improvement in the FORTRAN
language. Their use not only simplifies the coding process but can significantly improve the readability of
FORTRAN programs. As shown in Chapter 6, any program containing IF-THEN and IF-THEN-ELSE
statements is easily modified to run on FORTRAN systems that do not allow these statements.

A few remarks are appropriate concerning the organization of this text. The first two chapters are
introductory. Chapter 1 contains a brief introduction to computer science and to some of the terminology
associated with computers. The term compiler described in this chapter is used throughout the text; hence,
an understanding of what a compiler does is essential. Other than this, Chapter 1 may be read at any time.
Chapter 2 contains an introduction to problem solving. The term algorithm is defined, and the sense in
which computer programs and algorithms are equivalent is explained. This chapter must not be skipped.

Chapters 3—7 contain a description of what may be called elementary FORTRAN programming.
Included are descriptions of the assignment statement, as used to perform numerical calculations; the READ,
WRITE, and PRINT statements, as used for elementary input and output operations; and the control state-
ments IF, GO TO, and DO. FORMAT statements, which often cause considerable difficulty for beginners,
are described in parts. The simplest forms of the FORMAT statement needed to produce meaningful output
are taken up in Chapter 3. The simplest forms needed to transfer numerical input data to the computer are
described in Chapter 5. In Chapter 8, we give a more detailed description of FORMAT statements used for
input/output operations involving numerical data; in Chapter 12, we describe the form needed for processing
nonnumerical character data; and in Chapter 16, the forms needed for logical, complex, and double precision
data are described. In each case, the material is written so that it can easily be taken up earlier, should that
be desired. Also included in these chapters on elementary FORTRAN are descriptions of the two modes of
operation used in FORTRAN programming: the batch processing mode and the conversational, or time-
sharing, mode. These two computing environments are described in Chapter 4 and essentially all of the
material following this chapter is appropriate in both environments. Situations where different methods
apply are clearly identified. '

The intermediate and advanced topics covered in Chapters 8—16 need not be taken up in the order of
their appearance. Indeed, much of this material is presented in such a way that it can be taken up much
earlier. For instance: the intrinsic functions (Sections 10.1-10.2) can be taken up any time after the logical
IF statement is introduced in Chapter 6; statement functions (Sections 10.3—10.4) can be taken up just after
Chapter 8; the material in Sections 12.1-12.4 on processing character data can be understood any time after
the DATA statement is introduced in Chapter 8; and data files (Sections 14.1-14.4) can be taken up any
time after Chapter 8. Included in these chapters on intermediate and advanced programming is a separate
chapter (Chapter 15) on sorting and searching. Although some of this material is difficult, the chapter should
not be omitted; at the very least, a method should be learned for sorting large files that will not fit in the
computer’s memory at one time.

Section 6.9, which describes the method of top-down programming, must not be skipped, for in many
respects it is the most important section in the book. It not only brings together many of the programming
principles learned in Chapters 26, but also describes the single most useful approach to programming that
is known. No introduction to programming can be considered complete without an understanding of and a
facility with the method of top-down programming.

We wish to take this opportunity to acknowledge the helpful comments of our reviewers: Charles
Downey of the University of Nebraska at Omaha, Kendall E. Nygard of North Dakota State University, and
Charles Pfleeger of the University of Tennessee. We feel that their many thoughtful suggestions have led to
a greatly improved text.

A very special thanks goes to Patricia Shea, our typist, proofreader, debugger, and consultant on
matters of form. Many of her suggestions concerning the text format have been adopted, and her meticulous
concern for detail was indispensable. Finally, we are happy to acknowledge the fine cooperation of the staff
at Brooks/Cole Publishing Company.

Robert J. Bent
George C. Sethares

Contents

Computer Systems 1

1.1 Computer Hardware 2
1.2 Computer Software 5
1.3 Review True-or-False Quiz 6

Problem Solving 9
2.1 Algorithms 9
2.2 Variables 11
2.3 Problems 13
2.4 Review True-or-False Quiz 14

A First Look at FORTRAN 15

3.1 Numerical Constants and Variables 16

3.2 Problems 17

3.3 Arithmetic Operations and Expressions 18

3.4 The Exponentiation Operator** 21

3.5 Problems 22

3.6 Assigning Values to Variables 22

3.7 Problems 25

3.8 Printing Results—The WRITE, PRINT and FORMAT Statements 26
3.9 Comments as Part of a Program 30

3.10 Problems 31

3.11 Review True-or-False Quiz 33 B
vil

viii

CONTENTS

4

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

7.1
7.2
7.3
7.4
7.5
7.6

8.1
8.2

Loading and Running a Program 35

Conversational Computer Systems 35
Problems 40

Batch Processing Systems 41
Problems 46

On Writing Your First Program 47
Problems 50

Review True-or-False Quiz 51

Processing Input Data 53

The READ Statement 53

Problems 57

Transmitting Input Data on Conversational Systems 59
Transmitting Input Data on Batch Systems 61

Reading Portions of Input Records 63

Unformatted READ Statements 64

Programming With the READ Statement 65

Problems 68

Processing Large Quantities of DATA (A First Look at Loops) 69
Problems 77

Review True-or-False Quiz 79

The Computer as a Decision Maker 81

The Logical IF Statement 81
Compound Logical Expressions 88
Problems 90

Flowcharts and Flowcharting 93
Problems 101

Block IF Statements 102

The Arithmetic IF Statement 105
Problems 106

Top-Down Programming 107
Problems 115

Review True-or-False Quiz 115

Loops Made Easier—The DO Statement
DO-Loops 117

Flowcharting DO-Loops 125

Problems 127

Nested DO-Loops 129

Problems 140

Review True-or-False Quiz 143

More on Input-Output Programming

Carriage Control Characters 145
Edit Descriptors—Too Many or Too Few 146

117

145

10
1

12

8.3 The / (Slash) Edit Descriptor 147

8.4 The DATA Statement—Initializing Variables 152
8.5 Problems 154

8.6 Repeat Specifications 157

8.7 The E Edit Descriptor 159

8.8 Problems 161

8.9 Review True-or-False Quiz 163

Arrays and Subscripted Variables
9.1 One-Dimensional Arrays 165
9.2 The DIMENSION Statement 168
9.3 Problems 178
9.4 Array Input and Output 181
9.5 Problems 188
9.6 Sorting 190
9.7 Problems 195
9.8 Two-Dimensional Arrays 197
9.9 Problems 207
9.10 Review True-or-False Quiz 209

Functions 211
10.1 Intrinsic Functions 211
10.2 Problems 217
10.3 Statement Functions 219
10.4 Problems 223
10.5 Review True-or-False Quiz 225

Subprograms 227
11.1 Function Subprograms 227
11.2 Dummy Arrays 232
11.3 Problems 235
11.4 Subroutine Subprograms 236
11.5 Variable Dimensioning of Dummy Arrays 238
11.6 Subprograms That Call Other Subprograms 245
11.7 Summary 249
11.8 Problems 250
11.9 Review True-or-False Quiz 253

Processing Character Data 255
12.1 Storing Character Data 255
12.2 Printing Character Data 259
12.3 Manipulating Character Data 261
12.4 Problems 265
12.5 Character Arrays 266
12.6 Sorting Character Data 271
12.7 Problems 273
12.8 Review True-or-False Quiz 277

CONTENTS

165

ix

X

CONTENTS

13

14

15
16

Random Numbers and Their Application
13.1 The RANF Function 280
13.2 Modular Arithmetic and Random Numbers 284
13.3 Problems 286
13.4 Random Integers 287
13.5 Simulation 288
13.6 A Statistical Application 293
13.7 Monte Carlo 295
13.8 Problems 296
13.9 Review True-or-False Quiz 299

Data Files 301

14.1 Sequential Data Files 301

14.2 File Control Statements 303
14.3 Unformatted Files 305

14.4 Problems 308

14.5 File Maintenance 309

14.6 Problems 314

14.7 Review True-or-False Quiz 316

Sorting and Searching 317
15.1 Insertion Sort 318
15.2 Shell’s Method (Shell-Sort) 319
15.3 Binary Search 324
15.4 Merge Sorting 325
15.5 Problems 330
15.6 Review True-or-False Quiz 332

Specification Statements 333
16.1 Type Statements 333
16.2 The IMPLICIT Statement 337
16.3 Problems 337
16.4 The EQUIVALENCE Statement 339
16.5 The COMMON Statement 341
16.6 Labeled COMMON Blocks 343
16.7 BLOCKDATA Subprograms 344
16.8 Problems 345
16.9 Review True-or-False Quiz 347

A The Order of Appearance of FORTRAN Statements
in Any Program Unit 349

B FORTRAN Intrinsic Functions 351

B.1 Numeric Functions 351
B.2 Character Functions 353

c Answers to Selected Problems 355
Index 371

279

Computer
Systems

An electronic computer system has the ability to store large quantities of data, to process these data
at very fast rates, and to present the results of this processing in ways that are meaningful to the task at
hand. Thus, if the task is to prepare a payroll, employee data will be stored in the computer, the computer
will process these data to calculate relevant wage statistics, and the results will be presented in printed form,
possibly including paychecks. This payroll example illustrates the three principal tasks involved in any
computer application: data must be presented to the computer (INPUT), data must be processed
(PROCESS), and results must be presented in a meaningful way (OUTPUT). (See Figure 1.1.)

INPUT PROCESS OUTPUT

From employee q Calculate wage @ Payroll with
ledger statistics paychecks

FIGURE 1.1. An INPUT-PROCESS-OUTPUT diagram.

The purpose of this chapter is not to convince you that a computer can “do” many things, nor even
to indicate the computer applications you will be able to carry out after completing this text. Rather, the
objectives of this chapter are to introduce you to the types of computer equipment you may encounter, to
describe what a computer program is, and to introduce certain terminology that is helpful when talking
about computers.

CHAPTER 1 COMPUTER SYSTEMS

1.1 Computer Hardware

Central to every computer system is an electronic computer whose principal function is to process data.
The computer component that does this is called the central processing unit (CPU). The CPU contains
an arithmetic unit, consisting of circuitry that performs a variety of arithmetic and logical operations, and
a control unit, which controls all electrical signals passing through the computer. In addition to the CPU,
every computer has a memory unit which can store data, and from which data can be retrieved for
processing. Fortunately, you need not understand how a computer processes data to make a computer work
for you. The circuitry in a computer is not unlike that in an ordinary pocket calculator, and all who have
used calculators know that no knowledge of their circuitry is needed to use them.

Data must be transmitted to the computer (Input), and results of the processing must be returned
(Output). Devices meeting these two requirements are called input and output (I/O) devices. The I/O
devices you are most likely to encounter in your introduction to computer programming are as follows.

Teletypewriter and Video Terminals: These serve as both input and output devices. On a tele-
typewriter (Figure 1.2) you transmit information to the computer simply by typing it at the
teletypewriter keyboard and the computer transmits the results back to the teletypewriter, which
produces a printed copy for you. A video terminal (Figure 1.3) works the same way except that
the results are displayed on a video screen.

Card Readers: Information can be transferred to punched cards for submission to a computer.
(This process is discussed in Chapter 4.) A card reader (Figure 1.4) is used to “read” the
information punched on these cards and transmit it to the computer. Card readers serve only as
input devices.

Line Printers: A line printer (Figure 1.5) serves only as an output device. As indicated by its
name, an entire line of output is printed simultaneously. Computer systems that use card readers
for input usually use line printers for output.

Figure 1.2 (above) ASR Model 43 Data Terminal with
paper tape unit. (Courtesy of Teletype Corporation.)
(left) DECwriter LA-36 Terminal. (Courtesy of Digital
Equipment Corporation.)

1.1 COMPUTER HARDWARE 3

FIGURE 1.3. Digital VT100 Video display with key- FIGURE 1.4. Card reader. (Courtesy of Control Data
board. (Courtesy of Digital Equipment Corporation.) Corporation.)

FIGURE 1.5. Dataproducts’ B-Series band printer. (Courtesy of Dataproducts Corporation.)

4 CHAPTER 1 COMPUTER SYSTEMS

Most modern computer systems are equipped with storage devices other than the memory unit. They
are called external (or secondary) storage devices because they are not a part of the computer as is the
memory unit. The most common external storage devices are as follows.

Magnetic-tape units: Information is stored on magnetic tapes as sequences of magnetized
“spots.” Although tape units can be rather “large” (Figure 1.6), some computer systems (es-
pecially microcomputer systems) use ordinary cassette tape recorders. Data are “read” from a
tape by reading through the tape sequentially until the desired data are found. For this reason,
tape units are called sequential access devices.

Disk-storage units: (Figure 1.7) Information is stored on rotating disks that resemble phono-
graph records. However, the disks have no grooves; the data are ‘stored as sequences of mag-
netized spots appearing on concentric circles. A disk unit will contain one or more disks, each
with one or more read/write heads. Disk units are called random access devices. This term
indicates that data stored on any part of a disk can be accessed directly without having to read
through the entire disk to find the desired data.

FIGURE 1.7. IBM 5444 Disk unit. (Courtesy of IBM
Corporation.)

FIGURE 1.6. Magnetic tape unit. (Courtesy of Honey-
well Information Systems.)

1.2 COMPUTER SOFTWARE

Data terminals, card readers, tape units, disk units, and all other mechanical and electrical devices
other than the computer itself are referred to as computer peripherals. The computer and all peripherals
constitute what is called the hardware of the computer system. Figure 1.8 illustrates the flow of information
between a computer and its peripherals.

External
storage devices

g

COMPUTER

I Arithmetic unit]

CPU
Input | Control unit | ’_> Output
devices devices

Memory Unit

FIGURE 1.8. Flow of information through a computer
system.

1.2 Computer Software

The physical components, or hardware, of a computer system are inanimate objects. They cannot prepare
a payroll or perform any other task, however simple, without human assistance. This assistance is given in
the form of instructions to the computer. A sequence of such instructions is called a computer program,
and a person who determines what these instructions should be is called a programmer.

The precise form that instructions to a computer must take depends on the particular computer system
being used. FORTRAN (FORmula TRANSslation) is a carefully constructed English-like language used
for writing computer programs. Instructions in the FORTRAN language are designed to be understood by
people as well as by the computer. Even the uninitiated will understand the meaning of this simjple FOR-
TRAN program:

TERM1=3

TERM2=9
SUM=TERM1+TERMZ2
PRINT SUM

STOP

END

A computer is an electronic device and understands an instruction such as TERM1=3 in a very
special way. An electronic device can distinguish between two distinct electrical states. Consider, for
instance, an ordinary on/off switch for a light fixture. When the switch is in the “on” position, current is
allowed to flow and the light bulb glows. If we denote the “on” position by the number 1 and the “off”
position by the number 0, we can say that the instruction 1 causes the bulb to glow and the instruction 0
causes it not to glow. In like manner, we could envision a machine with two switches whose positions are
denoted by the four codes 00, 01, 10, and 11, such that each of these four codes causes a different event
to occur. It is this ability to distinguish between two distinct electrical states that has led to the development
of modern computers. Indeed, modern computers are still based on this principle. Each computer is designed
to “understand” a certain set of primitive instructions. On some computers these instructions take the form
of sequences of 0’s and 1’s, but their precise form is not important to the beginner. All such primitive

CHAPTER I COMPUTER SYSTEMS

instructions that are meaningful to a particular computer are together called the machine language for that
computer.

You will not be required to write programs in machine language. The computer you use will contain
a compiler, which automatically translates your FORTRAN instructions into equivalent machine-language
instructions that are then executed by the computer (Figure 1.9). Thus, when the six-line FORTRAN
program shown above is presented to the computer, the compiler produces an equivalent machine-language
program that instructs the computer to perform the specified task. The FORTRAN program is called the
source program and the machine-language program is called the object program.

OUTPUT
INPUT PROCESS Object program
Source program => Translate to an @ (Machine-language
(A FORTRAN program) equivalent machine- program ready to be
language program executed by the
computer)

FIGURE 1.9. INPUT-PROCESS-OUTPUT diagram for a FORTRAN compiler.

FORTRAN compilers are themselves computer programs. They are called system programs because
they are an integral part of the computer system being used. The FORTRAN programs appearing in this
text, as well as the programs you will write, are called application programs. They are not an integral part
of the computer system, so they are not called system programs. All computer programs, both system
programs and application programs, are called computer software. The term software refers not only to
computer programs, but also to any documentation, such as manuals and circuit diagrams, concerned with
the operation of computers.

In addition to a FORTRAN compiler, your system will most likely include other system programs.
These include programs to produce printed listings of your programs, to “save” your programs on secondary
storage devices for later use, to assist you in finding errors in the programs you write, and, most important
of all, a program called the operating system that exercises general control over the entire system. The
operating system allows you to issue commands to the computer to “call up” and execute any of the other
system programs provided.

The emergence of computer science as a new discipline has been accompanied by a proliferation of
new words and expressions. They are useful for talking about computers but are, for the most part, absolutely
unnecessary if your objective is to learn a computer language such as FORTRAN to assist you in solving
problems. In our discussion of computer hardware and software, we have attempted to introduce only
fundamental concepts and frequently used terminology. If this is your first exposure to computers, you may
feel lost in this terminology. Don’t be disheartened: much of the new vocabulary has already been introduced.
You will become more familiar with it and recognize its usefulness as you study the subsequent chapters.
You will also find it helpful fo reread this chapter after you have written a few computer programs.

1.3 Review True-or-False Quiz

1. The principal function of a computer is to process data. T F
2. The term arithmetic unit is another name for the CPU. T F
3. I/0O devices, external storage devices, and the central processing unit are called com-

puter peripherals. T F
4. Card readers and video terminals can be used as input devices but cannot be used as

output devices. T F

5. Disk storage units are called random access devices because information stored on

a disk is accessed by randomly searching portions of the disk until the desired data

are found. T F
6. Tape units are called sequential access devices because information is read from a

tape by reading through the tape until the desired data are found. T F

oo

10.

11.
12.

1.3 REVIEW TRUE-OR-FALSE QUIZ

. The function of a FORTRAN compiler is to translate FORTRAN programs into

machine language.

. A FORTRAN compiler is part of the hardware of a computer system.
. A FORTRAN program written to solve a particular problem may accurately be called

a system program.

The machine-language program obtained when a FORTRAN program is compiled is
called the object program.

An operating system is a computer system.

The expressions computer software and computer program are synonymous.

- = -
T

oL, T SE#EPDRIE U 0] : www. ertongbook. com

