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‘

PREFACE -

This book is a companion volume to our first book, Analysis, Manifolds
and Physics (Revised Edition 1982). In the context of applications of
current interest in physics, we develop concepts aad theorems, and

‘present topics closely related to those of the first book. The first book is

not necessary to the reader interested in Chapters I-V bis and already

familiar with differential geometry nor to the reader interested in Chapter

VI and already familiar with distribution theory. The first book empha-

sizes basics; the second, recent applications.

Applications are the lifeblood of concepts and theorems. They answer
questions and raise questions. We have used them to provide motivation
for concepts and to present new subjects that are still in the developmen-
tal stage. We have presented the applications in the forms of problems
with solutions in order to stress the questions we wish to answer and the
fundamental ideas underlying applications. The reader may also wish to
read only the questions and work out for himself the answers, one of the
best ways to learn how to use a new tool. Occasionally we had to give a
longer-than-usual introduction before presenting the questions. The or-
ganization of questions and answers does not follow a rigid scheme but is
adapted to each problem.

This book is coordinated with the first one as follows:

1. The chapter headings are the same - but in this book, there is no
Chapter VII devoted to infinite dimensional manifolds per se. Instead,
the infinite dimensional applications are treated together with the
corresponding finite dimensional ones and can be found throughout
the book.

2. The subheadings of the first book have not bteen reproduced in the
second one because applications often use properties from several
sections of a chapter. They may even, occasionally, use properties
from subsequent chapters and have been placed according to their
dominant contribution. )

3. Page numbers in parentheses refer to the first book. References to
other problems in the present book are indicated [Problein  Chapter
Number  First Word of Title]. :

The choice of problems was guided by recent applications of differen-
tial geometry to fundamental problems of physics, as well as by our

v



vi PREFACE

personal interests. It is, in part, arbitrary and limited by time, space, and
our desire to bring this project to a close.

The references are not to be construed as an exhaustive bibliography;
they are mainly those that we used while we were preparing a problem or
that we camé across shortly after its completion. :

The book has been enriched by contributions of Charles Doering,
Harold Grosse, B. Kent Harrison, N.H. Ibragimcv, and Carlos Moreno,
and collaborations with Ioannis Bakas, Steven Carlip, Gary Hamrick,
Humberto La Roche and Gary Sammelmann. Discussions with S. Blau,
M. Dubois-Violette, S.G. Low, L.C. Shepley, R. Stora, A.H. Taub, J.
Tits and Jahja Trisnadi are gratefully acknowledged.

The manuscript has been prepared by Ms. Serot Almeras, Peggy
Caffrey, Jan Duffy and Elizabeth Shepherd.

This work has been supported in part by a grant from the National

* “Science Foundatior PHY 8404931 and & grant INT 8513727 of the

U.S.-France Cooperative Science Program, jointly supported by the NSF
and the Centre National de la Recherche Scientifique.
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CONVENTIONS

M {fn:={fi:neN}.

(2) Commutative diagram x—;y - (fix—y, g y=z
h\ / g La=gof

z
(3) Integer part: if d/2=3.5, then [d/2] =

(4) A\B and A/B sometimes mean left and right coset, respectively; but
usage varies and is determined in each context.

(5) Exterior product, exterior derivative, interior product

(@A BV s Vpa) = P!Iq!Er;,(signﬂ)ﬂ[a(vl,...,vp)

' §

X BUpers -+ s Upag)],

(@RBYU - s Upug) = m > (sign M T{a(v,, . . ., v,)B

X (l’p‘i-lv ¥ 9w Y vp+q)} 4

‘When operating on 2 p-form d =d/(p +1) and i, = pi,. Note that
Kobayashi and Nomizu (Vol. I, p. 35) use what we call A.

{6) Riemann tensor, Ricci tensor

(vavﬁ —VBVG)UA = Rnﬂkuv“ ?

i.e.
RaB"u:aarﬁ’\u F)‘ +[~p FA —I'ﬂp“r“ﬂ o
Ry, =R, 4"

aB u

These conventions agree with Misner, Thorne, and Wheeler and
differ from those of our first book Analysis, Manifolds and Physics.
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xii CONVENTIONS

(7) A representation of the Dirac matrices

‘yy.‘YV + yvy“ = 2"1,“, ny.v = dlag(+’ +5 +, _)
0 0 0 i /0 0 01
o o io lo o -1 0\
h 0 -i 0 0]° %27lo -1 o0 o0)
-i 000 \1 o o o
00 i 0 [i0 0 0
000 —i _foi o o
B=l-i00 ofr " loo -i of
0i0 0 00 0 —i

Majorana representation of the Dirac matrices

7n7v + 7v7p = 27"4.» np.v = dlag(+’ +7 +’ _)
000 -1 10 0 0
, 1l oo1 o {001 0 0
¥ 010 o] " loo -1 of
-1 00 0 0.0 0 =1
0 LM 0 PV 1\
, b o o o -1 40701 0
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I. REVIEW OF FUNDAMENTAL NOTIONS OF ANALYSIS
1. GRADED ALGEBRAS

For applications and references see, for instance, Problems II 1, Super-
smooth mappings and III 14, Graded bundles.

A Z, graded algebra A is a vector space over the field of real or complex
numbers which is the direct sum of two subspaces A, (callad even) and
A _ (called odd)

A=A, DA_

endowed with an associative and distributive operation, called product,
such that '

AA ,=A,  (mod.2), r,s=0,1, A=A,, A=A

A Z, graded algebra is calied graded commutative if any two odd
elements anticommute and if even elements commute with all others:

ab=(-1)"@"pa  a be A

where d(a)=r if a€ A, is the parity of a.

We shall consider in this section only graded commutative algebras, so we
shall omit the word ‘“‘commutative”.

The algebras we shall use will be endowed with a locally convex Haus-
dorff topology for which sum and product are continuous operations.
For example, the exterior (Grassmann) algebra over a finite dimensional
vector space X (p. 196) is a graded algebra.

A generalization used in physics, which we shall call a (Bryce) DeWitt
algebra is'the algebra B of formal series with a unit ¢ and an infinite
number of generators z', I €N, with the usual sum and product laws and

the anticommutation property
'S et o
An element a € B is written (notion of convergence is irrelevant) =~

1 ‘ §
2N s v TP
A

. 1
a= 2 a(p), a(p)=p—!al

PEN

1

graded
algebra

graded
commutative

parity

(Bryce) DeWinx
algebra B
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2 I. REVIEW OF FUNDAMENTAL NOTIONS OF ANALYSIS

a(0) = aye is called the body of a, ag = L,., a(p) its soul. The numbers
g, @y ... are real or complex, a; i is totally antisymmetric in
I, ... 1,; the degree of a(p) is p.

B, consists of the formal series which contain only terms of even degree,

B_ consists of those with only terms of odd degree. B, is a subalgebra of
B, while B_ is not.

Show that if ab =0 for all b€ B, [resp. b € B_] then a=0.
Are these properties true in a finitely generated Grassmann algebra?

Answer: If ab=0 for all b belonging to B, , or to the even part of a
finitely generated Grassmann algebra we see that 2 =0 by taking b = e.
Suppose now ab =0 for all b€ B_. In particular az' =0 for each z’,

IE€N. Suppose a coefficient a, .1, #0. Choose ZE@EN ..., 2%). We
have

a .. ,"z’l ...z%z" %0, hence a#0.

If there is a finite number N of generators the hypothesis ab =0 for all
odd b implies only

. @ )
a=cz'...z% c arbitrary numbers. A

B is endowed with a locally convex, metrizable, Hausdorff topology by
the countable family of seminorms (cf. for instance, p. 424)

llallx, e Ial, e I’l'

The sum of formal series (in particular the decomposition B =B, @ B_)
and their product have the required continuiry.

Show that: The partial sums

a, =2 a(p)

p=0
converge to a, in the B-topology, when m tends to infinity.

Answer: If || ||;, ., is a seminorm on B we have exactly
la=anll, =0 it m>p.
Let f(x) =L, _.oc,x" be a numerical series with radius of convergence p.

Show that f(a) =L c,a" is a well-defined formal series in B, depending
continuously on a, if |ay| < p.




2. BEREZINIAN 3

Answer: We have a = age + ag, 50
: n

n P n=P P

a’" = 20 Cla, "as.
e

Since f(x) is convergent for |x] < p, the numerical series £,, c,C?a} ™"

nzp“n

are convergent for |a,| < p. We denote their sum by @, and we write

Dc,a"=2 aa =2 b(q).

Each term on the right-hand side is well defined: b(q) is obtained by
finite sums and products since a term of order g arises from af only when
r=q.

In a similar spirit one proves that the inverse in B of an element a with
@, # 0 is the formal series:

al= ag’v(l D, (—l)"(aS/ao)").

2. BEREZINIAN

A graded matrix on a graded algebra A is a rectaugular array of elements graded marrix
of A, together with a parity attached to each row and column. A square

graded matrix with p even and ¢ odd rows and columns is said o be of

order (p, gq). B order (p. g}
A graded matrix X = (xi,) is called even [resp. odd] if for all i, j: even. odd

d(xij) + d(ith column) + d( jth row) =0 [resp. 1](mod. 2);
one then séys that d{X) = Ofresp. d(X) =1].

1) We shall always suppose that in a graded matrix X of order (p, q)
_(R § )
Z=(r. u
the p even rows and columns are written first.

Give the conditions on the parities of the elements of R, S, T, U for X to be
even [resp. odd]. :

Answer: The parities of the columns of R, T are even, those of §, U odd,
while the rows of R, § are even and of T, U odd. Thus d(X) =0 if and

only if the elements of R, U are even and the elements of T, S odd. The
opposite condition holds for d(X) = 1.
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4 1. REVIEW OF FUNDAMENTAL NOTIONS CF ANALYSIS

2) Show that the space Mat, ,(A) of graded matrices of order (p, q)
forms a Z, graded algebra. .

Answer: The space Mat, _(A) obviously forms a vector space over R or C
(like A), and each element can be written as the sum (usual sum of
matrices) of an even and an odd one.

The elements in the product are defined by the usual law

R ERRERST' 7 RS’ + SU'
xx'=(7g: syt 75 + UU")
It is easy to check that if X and X’ have a parity, then
d(XX'") =d(X) +d(X")(mod. 2).
3) Let B be a DeWitt algebra. Denote by GL o(B) the multiplicative
group of even invertible graded matrices of order ( P, q).
a) Let X = (’;. i,) € Mar, (B), d(X) =0,
Show that X is invertible if and only if R and U are invertible.

b) The determinant of a square matrix with even elements in B is well
defined by the usual polynomial. The Berezinian of a matrix X €
GL, ,(B) is the mapping GL, ,(B)— B given by

Ber X =det(R— SU 'T)(det U) ™.

Show that Ber X is even valued and invertiple.

c) Show that
Ber(XY)=Ber X Ber Y.

Answer a: Under the hypothesis the body of X is
R, O
%=(% v,)
which is invertible if R, and U, are invertible.

Answer b: Ber X is even because R and U have even elements, S and T
odd elements. It is invertible because

(Ber X), = (det R,)(det U,)™" #0.

Answer c: The proof is straxghtforward in a number of steps (cf. for
instance, Leites, p. 16) using in particular the decomposition



3. TENSOR PRODUCT OF ALGEBRAS S

(R 5)=(% SU")(R*SU“T 0) b U
T =)~ \0 1,- 0 u/\u-'r T,
and the fact that any matrix of the form

(o 1)

is a product of matrices of the same type, but with a matrix A having only
one nonzero element.

REFERENCES

B.S. DeWitt, Supermanifolds (Cambridge University Press, London, 1984) and Appendix
of “The spacetime approach to quantum field theory”, in: Relativité, Groupes et
Topologie I, eds. B.S. DeWitt and R. Stora (North-Holland, Amsterdam, 1984).

D.A. Leites, “Introduction to the theory of supermanifolds”, Russian Mathematical
Surveys 35 (1980) 1.

3. TENSOR PRODUCT OF ALGEBRAS

A real algebra A is a vector space over R endowed with an associative
product, A X A— A, bilinear with respect to the vector space structure
(cf. a more general definition of algebra, p. 9).

1) Suppose A and B are finite dimensional (as vector spaces) real alge-
bras. Find a natural structure for A B.

Answer: Let (e,) and (e, ) be basis for A and B respectively. Thene, @ e,
is a basis for A ® B. We define products of such elements by

(ei ® ea )(e; ® eﬁ) = eie; ® eaeB ?
where juxtaposition denotes product in the relevant algebra.
- ';'he"product of arbitrary elements ¢ = c'%¢, @ e,, d = d’Bej ® e, is given
4
— iagiB
cd=c"d"(eje;@e,e5).

.lt is easy to show that this product has ‘the required properties and is
independent of the choice of basis in A and B.

2) Show that if A is a real algebra, then the complexified algebra A ® C is
generated by the complexified vector space AS, that is, the vector space
spanned by ae,, e, basis of A, a' €C.
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6 I. REVIEW OF FUNDAMENTAL NOTIONS OF ANALYSIS

Answer: A basis of C as a real vector space is (1,i), and the algebra
structure is determined by i’ = —1; a basis of AQC is (e;®1,¢;®1i),
which we can denote (e, ie;) without breaking the product law.

3) Example: Tensor products of matrices (see Problem I4, Clifford
algebras). Let A be the space of n X n matrices and B be the space of
m X m matrices. Construct a® b fora€ A, b€ B,

Answer: Let a={a ) b= (b") be respectively an n X n and an m X m
matrix. Then a®b {(a® b)}), where the indices / and J stand for a

pair of indices (i, @) or (j, B) and (a® b)) = a; . Usually one orders
pairs of indices as follows: (1,1), (1,2),... (2 1) (232)5:

Note: In Problem IV 2, Obstruction, fellowing Atiyah, Bott and Shapiro,
we shali use the graded tensor product of two graded algebras defined as
follows. Let A=X,_,, A'and B=X,_,, B' be two graded algebras. The
graded tensor product A® B is, by definition, the algebra whose underly-
ing vector space is L, ;o , A’ ® B’ with multiplication defined by

w®x)(y;@®v)=(- 1)”".",' @ xv,

where x; [resp. y;] is an element of B’ [resp. A’], u[resp. v} is an arbitrary
element of A [resp. B].

The graded tensor product is again a graded aigebra
(A®BF=SA'®B, i+j=kmod2.

For example, consider the odd element e, ®1+1®e,, its square
e ®1+1®é€ is even.

4. CLIFFORD ALGEBRAS

1. INTRODUCTION

Let V be a real d=n+ m dimensional vector space with a pseudo-
euclidean scalar product g, invariant under the group O(n, m), given by
8=(845): 845=0if A#¥B, g,,=1, A=1,...,n,8,,=-1if A=
n+1,..., n+m. The Clifford algebra (p. 65) 4(n, m) is the real vector
space endowed with an associative product. distributive with respect to



