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LASERS AND THEIR
APPLICATIONS



Introduction

The volume contains the proceedings of the Course on !'"Lasers and
their Applications!" of the International School of Applied Physics which
was held in Erice, Sicily from 31 May to 13 June 1970 within the frame
of the "Ettore Majorana!' Centre for Scientific Culture,

The subject was chosen in order to satisfy the demand of a basic
course on laser sources and their applications covering the more recent
results in the field,

The Course had also the purpose of promoting interdisciplinary meetings
and discussions among researchers active in different areas (such as Ap-
plied Physics, Engineering, Chemistry, Medicine, etc.) from University
or Industrial Laboratories.

The aim was to strengthen the links between fundamental, applied and
industrial research which must be very close in this field for an effecti
ve interaction,

The Course consisted of two parts: the first week was devoted to
the Theory of Laser Operation and to the State of the Art of Laser Sources;
during the second week the most significant applications of lasers to
scientific and technical problems were analyzed.

The lectures on laser sources covered the following topics: Interac
tion of Radiation with Miatter, Optical Resonators, SolidState Lasers, Gas
Lasers, Semiconductor Lasers, L.iquidLasers.

The lectures on applications dealt with Theory and Applications of
Holography, Information Processing by Optical methods, Atmospheric
Propagation, Transmission of Informations with laser beams, Distance
Measurements by modulated beams, Machining with Laser Beams, Medical
Applications, Scattering Experiments, Nonlinear Optics, Plasma Genera
tion and Diagnostics.

This volume provides a comprehensive review of the laser field
which may be of use either to the young graduate or to the experienced
scientist interested in having basic information on laser sources or a
first contact with some specific application.

A. Sona
Director of the Course
CISE, Segrate, Milan, Italy

Director of the School Director of the Centre
1. F. Quercia A. Zichichi
University of Catania, ltaly University of Bologna, ltaly
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A. E. Siegman
Stanford University
Stanford, California

To have a complete understanding of any laser one must understand
(1) the atomic laser medium and the pumping process by which population
inversion is produced in the energy levels of this medium, (2) the elec-
tromagnetic radiation modes of the laser and the cavity structure that
supports these modes, and (3) the interaction process between these radi-
ation modes and the laser atoms. In these sections we will be primarily
concerned only with the third of these topics, and we will also be more
concerned with deriving and understanding the equations governing the in-
teraction of radiation and matter in lasers than we will be in solving
these equations or applying them to any specific laser cases.

To analyze the interaction of radiation with matter in lasers, one
must consider both (1) the effects of the radiation on the atoms, and (2)
the reaction of the atoms back on the radiation modes. The first is a
quantum-mechanical problem, although simple semi-classical models can be
very useful. The second is essentially an electromagnetic problem and

can almost always be treated classically.

INTRODUCTION

A. THE CIASSICAL ELECTRON OSCILIATOR MODEL

Even without an advanced knowledge of atomic physics we can learn
from experiments that atoms exhibit sharp resonances or absorption lines

at transition frequencies characteristic of each type of atom; and that



2 INTERACTION OF RADIATION WITH MATTER

many of these resonances respond to the electric rather than the magnetic
field of an applied signal. Some atomic transitions do respond only to
magnetic fields, e.g., the magnetic-dipole type of transitions observed
in magnetic resonance (NMR and EFR) and in microwave solid-state masers.
However, most laser transitions are electric-dipole transitions and re-
spond to the ac electric fields of an applied signal.

As a classical model for any one atomic transition we may, therefore,
consider a cloud of negative electronic charge surrounding a nucleus as in
Fig. 1(a), or an even more mechanical model consisting of a single elec-
tron of mass m and charge -e supported by springs as in Fig. 1(b). 1In
either case a displacement of the electron charge from its equilibrium pos-
ition will cause a restoring force such that the atom will oscillate at a
frequency which we can identify with the atomic transition frequency W, .
The equation of motion for the electronic charge in an externally applied

electric field Sx(t) is then

+y + mix(‘t) = - —¢e (%) . (1)

We include in the equation of motion a damping factor y because we also

know from experiment that real atomic transitions exhibit a finite damping
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FIG. 1 Two different semiclassical models for an atom. The atom is de-
sceribed (a) as a small massive nucleus surrounded by a fuzzy,
roughly spherical cloud of electronic charge, or (b) a purely
mechanical model. The springs give the electron an oscillation
frequency w, for displacements x(t) from its equilibrium
position.
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rate and a finite resonance linewidth. We are usually interested in

sinusoidal ac signals and responses, so that

Ek(t) = % [AEX B cc]
’ . (2)
x(t) = % [>X ejw‘t + cc]

The notation cc means complex conjugate of the preceding term. The

steady-state response of the oscillator model is then

e L
X() = § - ——F—5— E(0) “ (3)
m oyw + jlo - w_ )
a
Because we are interested only in resonant responses with o = Wy, we
always make the resonance approximation
w2 - mg = (w+w) (wW=-0) =~ 20(w=-w) . (W)
a a a a
The steady-state motion then becomes
e L
X(w) = 3 E_(w) . (5)

5 X
mnAma 1+ 2w - ma)/Awa

The quantity Ama is the linewidth of the resonant response, which has
the value Awa = v at the present stage of the analysis, where we have
included lifetime broadening but not yet any collision broadening. The
oscillator or the atom exhibits a forced or stimulated internal oscil-
lation given by X(w) in the presence of an applied field Ex(m) .

Now, a displacement of the charge -e by a vector displacement
x(t) creates an instantaneous electric dipole moment p(t) = - ex(t)
in the one atom or in the oscillator model. But in practical laser ma-
terials there will be a very large number of similar atoms per unit volume,

20

e.g., from ZI_O:LO to 10 atoms/cm3 depending upon the laser. We do not ob=-

serve the microscopic response of these atoms individually, but rather the



4 INTERACTION OF RADIATION WITH MATTER
macroscoplc response produced by the combined effects of many atoms per

wnit volume. Specifically, we observe the macroscopic electric polariza-

tion or electric dipole moment per unit volume p(t) given by

B®) = ) ) (6)
i

The sum is over all the individual atoms or oscillators i within a unit
volume. Note that in all laser materials (with the possible exception of
the semiconductor laser) the laser atoms are essentially discrete and
separate atoms. There are no collective interactions among the atoms,
except for comparatively weak and random interactions which we will dis-
cuss later in comnection with line broadening. Therefore, we can compute
the forced response p(t) of any one atom and then, in the classical
case, replace the summation in Eq. (6) by multiplication by N , the
number of atoms or oscillators per unit volume. If the polarization is

also written in sinusoidal form, i.e.,
d.
p(t) = 5 P(w) e + cc

the induced polarization in the atomic medium may be written as

Ne2 1

mofn, 1+ 2j(w = wa)/zxua

The electric displacement D in any medium having a polarization P is

given by

D = E+P . (9)

In a linear dielectric medium the polarization may be written by defini-

tion as

(10)

3=
3=



