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Preface

If you have access to a computer with the LISP language, you can
start to use LISP as you read this book. The best way to learn any
language is to start using it right away.

The first section of this book has a question and answer
format. There are also reviews and plenty of examples in this
section. The second section covers many diverse programs and
routines in LISP.

The reader who sincerely wants to learn and goes through
every question and answer will have all the information needed to
understand any LISP program.

Near the end of the question and answer sections I state that
different LISP systems might handle some things in a slightly
different fashion. For example, whenreviewing the programs don’t
be surprised to see in certain places the “ * “ symbols. This has
exactly the same meaning as the word quote as described in this
text. The LISP interpreter used while preparing this book used
this symbol instead of the more common quote function. All pro-
grams and definitions have been tested on a CDC-CYBER Compu-
ter.

Ken Tracton
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Part One: LISP

The LISP language, probably the best-know artificial intelligence
language, was invented by John McCarthy. LISP is generally con-
sidered to be a process-description language. It is used in artificial
intelligence because it is precise, unambiguous and relatively easy
to learn. The whole concept of artificial intelligence would be lost if
it were not for LISP and the other LISP-like languages.

Statements in LISP (with the exception of what is called the
0-level) are always enclosed in parentheses. Such an enclosure is
termed a list and the items contained are called elements of the list.
The LISP language is a prefix language where functions preceed
their arguments. This is somewhat similar to the RPN notation in
calculators but in reverse.

Of the many functions available in LISP, most of them are
mnemonics. Care should be taken in learning them in order to avoid
confusion. The elements in LISP are generally called ATOMS and
lists and ATOMS are termed S-expressions (symbolic-
expressions).

There are mathematical functions that use words instead of
symbols. Some functions construct lists while other functions take
lists apart. There are ways to inhibit function evaluation and ways
of causing function evaluation. Execution of the function is termed
evaluation. There are also special functions called predicates
which are like predicates in languages. These functions are either
true or false. Usually the word false is replaced with the word NIL.
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~ ALGEBRAIC FUNCTIONS

Is the logarithm of X written in BASIC as LOG(X)?
Yes, all functions in BASIC are written as “function” name
then in parentheses the argument of the function so named (Fig. 1).

. FUNCTION
Fig. 1. NAME ( X )

Is the logarithm of X written in LISP as
LOG(X)?

No, all functions in LISP are written as (“function name”
“variable”) (Fig. 2). Therefore the logarithm of X is written as:

(LOG X)

. FUNCTION .

Does this apply to all mathematical functions in LISP?
Yes, all functions are enclosed in parentheses.

How is the sum of X and Y written in LISP (Fig. 3)?
PLUS X Y)

Fig. 3. ( PLUS X Y )

In regards to algebraic manipulation how is LISP dif-
ferent from BASIC?

BASIC, FORTRAN and APL use an algebraic language. The
common functions such as sum, difference, quotient and product
are handled in a special way in order to increase the speed in which
the program can be written. In these algebraic languages, primitive
algebraic functions are written without parentheses. LISP, how-
ever, is a “functional” language. All functions, primitive or not, are
written with parentheses.

How do you write the log of sine of X in LISP?

Write with the parentheses (Fig. 4):

(LOG(SIN X))

10
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How would you write X/Z-Y in LISP?
Write this expression as:

(QUOTIENT X (DIFFERENCE Z Y ))
How would you write X-Y *Z in LISP?
You would write (Fig. 5):

(DIFFERENCE X (TIMES Y Z))

( QUOTIENT X ( DIFFERENCE Z ))

Fig. 5.

Can any arithmetic expression be written in LISP in
this way?

Yes, any function that is arithmetic in nature, including paren-
thesized expressions, can be written in this fashion.

How would you write (A-B) * (Z-X)?

Write this expression as (Fig. 6):

(TIMES(DIFFERENCE A B) (DIFFERENCE Z X))

TIMES < DIFFERENCE A I B ) ( DIFFERENCE 7 X ))

Fig. 6.

Can you write A *(-B) in LISP?
Yes, write A * (-B) as (Fig. 7):
(TIMES A (MINUS B))

Fig. 7. ( TIMES A ( MINUS B ))

What is the difference between “DIFFERENCE” and
((MINUS”?

The DIFFERENCE function is the same as ordinary subtrac-
tion, while the “unary minus” function is written as (Fig. 8):

P i

11



(MINUS *“variable”)

Therefore, to denote a negative number in LISP write:
(MINUS X)

And never (-X)

( MINUS X ) Fig. 8.

Do the algebraic functions in LISP always have two
arguments?

Yes, all algebraic functions in LISP must have a minimum of
two arguments, except for the unary minus function.

How do you write the function that forms the sum of
three or more quantities?

You write (Fig. 9):

(PLUS A B C)

which has the same meaning as:

(PLUS A(PLUS B C))

( PLUS A B C )

WHICH HAS THE SAME MEANING AS

[ (= B E)

Does this procedure also apply to multiplica-
tion?

Yes, you can write X * Y * Z as (Fig. 10):

(TIMES X Y Z) instead of writing:

(TIMES X (TIMES Y Z))

( TIMES X Y Z )
Fig. 10.

INSTEAD OF WRITING

(=] (=] [ )

Fig. 9.
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What are the arithmetic functions in LISP?

They are PLUS (addition), DIFFERENCE (subtraction),
TIMES (multiplication), QUOTIENT (division)and REMAINDER
(the value that remains after division).

What exactly is the REMAINDER function?

The REMAINDER function returns as its value the “remain-
der” when X is divided by Y. An example would be (Fig. 11):

(REMAINDER X Y)

if X and Y are 12 and 5respectively, the remainder would be 2.

( REMAINDER X Y ) Fig. 11.

Are there any other mathematical functions available
in LISP?

Yes, but they are discussed later.

EXPRESSIONS

Does the use of functions in LISP have disadvantages
or advantages?

There are both disadvantages and advantages to the use of
functions in the LISP manner.

What are the disadvantages?

The main disadvantages of the “function” method of LISP are
the lengthier expressions and the need for more parentheses (Fig.
12). For example, it is certainly easier to write in BASIC:

SIN (X * X-4)*A/B

than it is to write in LISP:

(TIMESSIN(DIFFERENCE(TIMES X X)4)) QUOTIENT A
B))

( TIMES < SIN (DIFFERENCE ( TIMES X X )
Fig. 12. 4 ))( QUOTIENT A B ))

What are the advantages of functions?
The advantage of the functional notation in LISP is its ability
to unify the language. In LISP, this is the only type of construction

13



available. Every feature of LISP, such as the transferring of con-
trol, conditional tests, definitions and so forth are “defined” by
creating a special function to handle them.

Is it always necessary to use all those parentheses for
simple arithmetic?

Yes, for standard LISP. But there is a special version of LISP,
called MLISP, which was designed to implement arithmetic func-
tions without resorting to “all” those parentheses.

What are the expressions called that you have been
using so far?

They are termed S-expressions.

How many component types are found in an
S-expression?

Two, they are the “elements” such as numerics (1 2 3.....9)
and character symbols (AB C. . . . Z). The other component is the
parenthesis (Fig. 13).

[ 1
(LEFT PARENTHESIS) (RIGHT PARENTHESIS)
FUNCTION
( 19 | |BLANKS [ | AZ | [COMMAS| | naves >
ELEMENTS

S-EXPRESSIONS
Fig. 13.

What do you call the numerics and symbols in LISP?

They are called ATOMS.

Is every expression that contains ATOMS and
parentheses an S-expression?

No, an S-expression only exists if certain rules are followed.

Are the following examples S-expressions?

(TIMES V N))

)PLUS 4 5)

(DIFFERENCE A B)

The first two are not S-expressions because the first example
ends in two parentheses and the second has a reversed first paren-
thesis. The third expression is indeed an S-expression.

How do you define an S-expression?

An S-expression is made up of ATOMS and parentheses.
There must be a balance between the number of left parentheses
and the number of right parentheses. There must be no reversal of
parentheses and the parentheses must not be in the wrong spot.
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Is there another important aspect of the S-expression?
Yes, you must also consider the blanks. In BASIC and in
FORTRAN blanks are ignored. But in LISP blanks are very impor-
tant to the operation of the functions.
What are blanks used for?
Blanks are used to separate arguments.
Can anything else be used instead of blanks in LISP?
Commas can be used instead, but most programmers prefer to
use blanks.
In what ways can commas replace blanks?
A comma can be placed in any spot where a blank would have
been (Fig. 14). The following examples will explain:
(TIMES C B).......... (TIMES, C B)
(TIMES C,B)
(TIMES,C,B)

Fig. 14.

LIKE CLASSICAL PHYSICS, A LISP ATOM
CAN NOT BE DIVIDED TO ANYTHING SIMPLER

Can more than one blank be used in a given place and
can blanks ever be left out?

In most programming languages, a string of blanks can be
inserted anywhere providing at least one blank is required in the
first place. Blanks can also be left out before or after a left or right
parenthesis.

Are the following two S-expressions legal in LISP?

(TIMES (SIN (DIFFERENCE (TIMES X X ) 4 )) (QUO-
TIENT AB))

(TIMES (PLUS X C) H (PLUS A B) PLUS R T))

Yes, they are both legal and acceptable in LISP. Only the
number of blanks have been increased. The following S-expression
is legal because only the blanks before the left and right parenth-
eses have been removed:

(TIMES(PLUS X C) HPLUS A B)(PLUS R T))
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Can the above rules be applied with any function in
LISP?
Yes, the rule applies to any construction in LISP.

ATOMS

What are the constants and variables in an
S-expression called?

They are called ATOMS

What rules do variables follow in LISP?

Variables follow the standard rule for identifiers. They must
be composed of letters or numbers and they must start with a letter
only.

What is the difference between variables in LISP and
in most other languages?

The major difference is in the upper amount of characters
permitted in the variable name. Most languages only allow a
certain amount of characters to be used. In LISP, any amount of

characters can be used in the construction of a variable name (Fig.
15).

OTHER
LANGUAGES Fig. 15.
SHORT VARIABLE NAME

LISP THIS IS A LONG VARIABLE NAME

Are there any special identifiers in LISP?

Yes, T, F and NIL.

What happens if you use one of these special (re-
served) identifiers?

Typically, the results will be unpredictable.

What are these reserved variables or identifiers used
for?

The T and F mean “true” and “false” respectively, while the

NIL has a number of uses.

What are the uses of the NIL in LISP?

Most of the uses of NIL will be covered later, but one is worth
mentioning now. Quite often in LISP, NIL is used to replace or
substitute for F. Actually, F is not used very often to mean “false”.
NIL is used instead.
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