A step-hy;-s | | imde to understandmg and
-using . LISF , anguage of artificial mtelln- ‘
gence l es many actual prt)glfams3 and routines.

}'J.

Ken Tracton

Programmer’s
Guide to LISP

Other TAB books by the author:

No. 771 Integrated Circuits Guidebook

No. 861 Display Electronics

No. 960 IC Function Locator

No. 1000 57 Practical Programs & Games in BASIC

No. 1050 The Most Popular Subroutines in BASIC

No. 1055 The BASIC Cookbook

No. 1085 24 Tested, Ready-to-Run Game Programs in BASIC

No. 1095 Programs in BASIC for Electronic Engineers, Techni-
cians & Experimenters

No. 1099 How To Build Your Own Working 16-Bit Microcomputer

DEDICATION

I would like to thank my friends who somehow understood me
when I was either wiriting or deep into computer printouts. I would
especially like to thank Alec, who coauthors other computer lan-
guage texts with me.

Programmer’s
Guide to LISP

by Ken Tracton

'TAB BOOKS Inc.
TAB BLUE RIDGE SUMMIT, PA. 17214

FIRST EDITION
FIRST PRINTING—AUGUST 1980

Copyright © 1980 by TAB BOOKS Inc.
Printed in the United States of America
Reproduction or publication of the content in any manner, without express

permission of the publisher, is prohibited. No liability is assumed with respect
to the use of the information herein.

Library of Congress Cataloging in Publication Data

Tracton, Ken.
Programmer’s guide to LISP.

Includes index.

1. LISP (Computer program language) . Title.
QA76.73.L.23T7 001.6'424 79-17237
ISBN 0-8306-9761-6 ;

ISBN 0-8306-1045-6 pbk.

Preface

If you have access to a computer with the LISP language, you can
start to use LISP as you read this book. The best way to learn any
language is to start using it right away.

The first section of this book has a question and answer
format. There are also reviews and plenty of examples in this
section. The second section covers many diverse programs and
routines in LISP.

The reader who sincerely wants to learn and goes through
every question and answer will have all the information needed to
understand any LISP program.

Near the end of the question and answer sections I state that
different LISP systems might handle some things in a slightly
different fashion. For example, whenreviewing the programs don’t
be surprised to see in certain places the “ * “ symbols. This has
exactly the same meaning as the word quote as described in this
text. The LISP interpreter used while preparing this book used
this symbol instead of the more common quote function. All pro-
grams and definitions have been tested on a CDC-CYBER Compu-
ter.

Ken Tracton

Contents

Part One: LISP............. SRR RSk s e e
Algebraic Functions
EXPressions......c....ccuevineninsensienens
ALOMSivin i niissinsssinaiavissossiinisess
OYMDOIS ::cumiisassassusssssimisisinisisusssersssasminsssionsasssssssias issivissnssass
[T (OO OO PP OPRTOP PPN
SUDISES......eeeevieeeeeitieeecetees e eaeeteesseesseeseesseseeesnerseeenesssasenssennens
BRECUNSION :cvwiisissussissvississisninsvonssseisssemisisisssisisnsasonisassssssassvasassss
TRE LISP SYStOM uuccumsssmmusisnssssssomsaivassivirsssassssassssssaiizg
SUDEXPIESSIONS. ... cvevreneenieniieeeereereeresisre s cssnssessesseseeseesnsenes
First ReVIOW .ussvosssscimmsmmmssssmsiiisasivresissmisians ismmasisasa
FUnctions in LISP....oo e
Common LISP Functions
LLOGIC susasiusssuissunsaimcossomnnssaias ovesamess suesssenasues s3as e sessuesssss ssuvsinss
LISP Parameters......ccccccccuuieeeiieeeiiieeeeeeerrseneeeecinneseeeecssaaeeeee s
LiSt PrOCESSING. . .ccveuerererrenrareersnnseirnenssresesssessnsressnssesensessensaenes
o0 [Lz T ——
SeCoNd REVIBW......ccouieieeeeceeerei e cveeeeeceere e
How Predicates Are USedccccvveeeiiiieniiieriiieeiiniiesiinieenns 76
Recursive FUNCHONSccccceeiiiieieiieeeeciimreecsesesinne e csssraeee e 78
Recursive List ProCesSingccvvvevveeirvinesinnnnsinresesisesresessnns 81
LOGIC: SECHON TWO ..ucicssinsssssmmmsssissussssasssrissesssssmssssmssinisnsavsis 83
DOt NOTALONcceeecirieiriiiee e esrn e sne e b s ene e s ese e rne s renesree 86
The General LISt wmummscsssmsisaaismmssismoiiissmasss v 87
TWO LiSt RECUISION ...t cne e eseesaeese s eaeessennasne s 89
TYPE FUNCHONS «.covvvernei it e 89
VIOTE: BROVIOW: i ivsssssossnsivsssssns sonnssssvuns v sisas assasssss asis esummsasnmsnossnnss 92
Programming......cc.cooriiiriimi e e s 93
More on Programming........cceeveeiimnsiinssmsniesisimssns 95
INPUYOUIPUY cccc.vonivmssmmmmssmmmsrmimimsssssssmsensssomsisssmismsssevasansss 106
ANd MOre REVIBWc.ceeriiiiiii et s sieesssssan s asessnasnes 108
IMOTE LISP ...t sa s e s s b s s br e e nains 112

Artificial INtOIIGONCE sxsss immsssmessivssssmismasssssssssssnsissisasssansenss 115

Part Two: Programs and EXamplescccveeresseressrnsssnnesenrorenss 121

e o 122
Annular Moment of Inertia...........ccccveevniinniiiniin e 124
Annular Polar Moment........cccooviiniiiinininninnccersinnninnn siivini 126
ALY CRBCK «visssssasessamssmsmmmisnsssasssissassssensassonmssnavids PO |~ - |
Atom’ Member:of:d List ...awwsmnswisumees ey 130
Circular Polar MOmMent..........ciiiniissiemeesmmnine 132
Complex Addition............ A S VS S SR eSS ST S T S 134
Complex Conjugate,i...... e R ST Ty 136
Complex Division § G TR P ——, 138
Complex MUltipliCation...........c..oaeiinecriienainnneiessesensaeriesens .140
Complex ReCIProCal..........couivieeeriiinniiissesiseeseesenssesseserennnes 142
Complex SUDraCHON..... et creeerc e ,... 144
COMPIEX, SOUAIE:sxsssuuimmarsssivessisessssnsssessssnssmssssssssnssss S5EHEITIH 146
Complex Square ROOt ... sresessenes 148
COSH(X) cvveeeeeveenesieseeeseeaessenessesesesesasssesessssessesseaeesssssassesanas 150
COTH(X) voeveereeeaenieiasissssasssesssesssssessasssesssssessesssssssssssass oo 152
COUNL...ccci et e et e e sa e saes 154
CSCH(X) cevrereeeeiesesteseesessesnsessssessesssssssesassssmesesssmeessenensasins 156
Depth of Parentheses s sz 158
Derivative of ACOS(X) s uussusisssussssonsssessississssssinmesssnissmssmns 159
Derivative of ACOT(X)eceeiearrriererreraemieneereeineeesieeeesmeneeeeens 161
Derivative of ASECH(X)...c...coeiiiinimiiiienininiiiesiieecnieeiens 162
Derivative of ATAN(X) wssmmussmmnsmmmsmsissasansmmsssssmmsmasg 164
Derivative of ATANH (X)...c.eoriierenieieieieiee e 166
Display‘the Nth Atom::«mmsssmmmarmnmmnmsmanmmss 168
=1 0] - | [S P PO 170
Falling ODbJECt....cccoviiiiiieeeiee e 171
FOIEN cvsnsmmmmmussmvcms s sy G RS TS 173
INAUCTANGCE s ssmssssvumssssmmmssmmsspmmerisnensmms e asssmss s 175
Imaginary Part of a Complex NUMDET..........cverivininieeneniine 176
Insertion of an Atom NO. 1 ...c..cociiiiiciiiiceiiieee e 178
Insertion of an Atom INO: 2 ..o 179
JOUIE'S LAW .ttt s 180
List of First AOMS.......ccoviiieieiiieeeices e 182
Mapping (One 1o ONe)u:iussssmsisssismivnssanswsimmsssssisasiiss 183
MACRING.:.cunsissmvvessaimessississimssisnssaspsrsisissssnasisssivavsmssamivyesss 184
Vector Value ... e 185
Paraliel Resistance uwanwmmrssmnmsimmmmsssmmanssmveanivms 186
Percentage Change.........c..ooceviiieniiiiciciieccrn e 187
Power (Any Positive INtBger) ..., 188
Power (Prmitive)sssuausspmmmnainianiiammsmmsrasmiss 190
o L= L — 191
Real Part of a Complex Number ... 193
Real to Complex Conversion....... 194
Rectangular Polar MOment........coiimiinimimninsni, 196
REMBY O i veissssisvssminmprasimassugeppenss gy srenssvs syrywsesssssons 197
Remove an Atom Erom a List ..o, 198

Remove the Numbers
Replacement..................
Reverse............
SECH(X) sxssimevamsssevarassorsmisisisnesmais w5385

SINHOO swsimmmasesmasmmmnsmm e e 203

TANH(X)...cccreerererssssssssssssessesssssssssssessssssssssesssnsessemsesssessssssseees 204

VECIOr AAItION....vvvvieriiiviiiriiiniiiirer s e eereiereseessnsnes 205
Vector Cross Produtt.. s 206
Vector Multiplied by a Scalar...........ceerimmiimmimn.. 208
Vector Test for all ZEroScecvvvvevienieriineeiinennnirenneseneeens 209

Part One: LISP

The LISP language, probably the best-know artificial intelligence
language, was invented by John McCarthy. LISP is generally con-
sidered to be a process-description language. It is used in artificial
intelligence because it is precise, unambiguous and relatively easy
to learn. The whole concept of artificial intelligence would be lost if
it were not for LISP and the other LISP-like languages.

Statements in LISP (with the exception of what is called the
0-level) are always enclosed in parentheses. Such an enclosure is
termed a list and the items contained are called elements of the list.
The LISP language is a prefix language where functions preceed
their arguments. This is somewhat similar to the RPN notation in
calculators but in reverse.

Of the many functions available in LISP, most of them are
mnemonics. Care should be taken in learning them in order to avoid
confusion. The elements in LISP are generally called ATOMS and
lists and ATOMS are termed S-expressions (symbolic-
expressions).

There are mathematical functions that use words instead of
symbols. Some functions construct lists while other functions take
lists apart. There are ways to inhibit function evaluation and ways
of causing function evaluation. Execution of the function is termed
evaluation. There are also special functions called predicates
which are like predicates in languages. These functions are either
true or false. Usually the word false is replaced with the word NIL.

9

~ ALGEBRAIC FUNCTIONS

Is the logarithm of X written in BASIC as LOG(X)?
Yes, all functions in BASIC are written as “function” name
then in parentheses the argument of the function so named (Fig. 1).

. FUNCTION
Fig. 1. NAME (X)

Is the logarithm of X written in LISP as
LOG(X)?

No, all functions in LISP are written as (“function name”
“variable”) (Fig. 2). Therefore the logarithm of X is written as:

(LOG X)

. FUNCTION .

Does this apply to all mathematical functions in LISP?
Yes, all functions are enclosed in parentheses.

How is the sum of X and Y written in LISP (Fig. 3)?
PLUS X Y)

Fig. 3. (PLUS X Y)

In regards to algebraic manipulation how is LISP dif-
ferent from BASIC?

BASIC, FORTRAN and APL use an algebraic language. The
common functions such as sum, difference, quotient and product
are handled in a special way in order to increase the speed in which
the program can be written. In these algebraic languages, primitive
algebraic functions are written without parentheses. LISP, how-
ever, is a “functional” language. All functions, primitive or not, are
written with parentheses.

How do you write the log of sine of X in LISP?

Write with the parentheses (Fig. 4):

(LOG(SIN X))

10

- @@ 0)

How would you write X/Z-Y in LISP?
Write this expression as:

(QUOTIENT X (DIFFERENCE Z Y))
How would you write X-Y *Z in LISP?
You would write (Fig. 5):

(DIFFERENCE X (TIMES Y Z))

(QUOTIENT X (DIFFERENCE Z))

Fig. 5.

Can any arithmetic expression be written in LISP in
this way?

Yes, any function that is arithmetic in nature, including paren-
thesized expressions, can be written in this fashion.

How would you write (A-B) * (Z-X)?

Write this expression as (Fig. 6):

(TIMES(DIFFERENCE A B) (DIFFERENCE Z X))

TIMES < DIFFERENCE A I B) (DIFFERENCE 7 X))

Fig. 6.

Can you write A *(-B) in LISP?
Yes, write A * (-B) as (Fig. 7):
(TIMES A (MINUS B))

Fig. 7. (TIMES A (MINUS B))

What is the difference between “DIFFERENCE” and
((MINUS”?

The DIFFERENCE function is the same as ordinary subtrac-
tion, while the “unary minus” function is written as (Fig. 8):

P i

11

(MINUS *“variable”)

Therefore, to denote a negative number in LISP write:
(MINUS X)

And never (-X)

(MINUS X) Fig. 8.

Do the algebraic functions in LISP always have two
arguments?

Yes, all algebraic functions in LISP must have a minimum of
two arguments, except for the unary minus function.

How do you write the function that forms the sum of
three or more quantities?

You write (Fig. 9):

(PLUS A B C)

which has the same meaning as:

(PLUS A(PLUS B C))

(PLUS A B C)

WHICH HAS THE SAME MEANING AS

[(= B E)

Does this procedure also apply to multiplica-
tion?

Yes, you can write X * Y * Z as (Fig. 10):

(TIMES X Y Z) instead of writing:

(TIMES X (TIMES Y Z))

(TIMES X Y Z)
Fig. 10.

INSTEAD OF WRITING

(=] (=] [)

Fig. 9.

12

What are the arithmetic functions in LISP?

They are PLUS (addition), DIFFERENCE (subtraction),
TIMES (multiplication), QUOTIENT (division)and REMAINDER
(the value that remains after division).

What exactly is the REMAINDER function?

The REMAINDER function returns as its value the “remain-
der” when X is divided by Y. An example would be (Fig. 11):

(REMAINDER X Y)

if X and Y are 12 and 5respectively, the remainder would be 2.

(REMAINDER X Y) Fig. 11.

Are there any other mathematical functions available
in LISP?

Yes, but they are discussed later.

EXPRESSIONS

Does the use of functions in LISP have disadvantages
or advantages?

There are both disadvantages and advantages to the use of
functions in the LISP manner.

What are the disadvantages?

The main disadvantages of the “function” method of LISP are
the lengthier expressions and the need for more parentheses (Fig.
12). For example, it is certainly easier to write in BASIC:

SIN (X * X-4)*A/B

than it is to write in LISP:

(TIMESSIN(DIFFERENCE(TIMES X X)4)) QUOTIENT A
B))

(TIMES < SIN (DIFFERENCE (TIMES X X)
Fig. 12. 4))(QUOTIENT A B))

What are the advantages of functions?
The advantage of the functional notation in LISP is its ability
to unify the language. In LISP, this is the only type of construction

13

available. Every feature of LISP, such as the transferring of con-
trol, conditional tests, definitions and so forth are “defined” by
creating a special function to handle them.

Is it always necessary to use all those parentheses for
simple arithmetic?

Yes, for standard LISP. But there is a special version of LISP,
called MLISP, which was designed to implement arithmetic func-
tions without resorting to “all” those parentheses.

What are the expressions called that you have been
using so far?

They are termed S-expressions.

How many component types are found in an
S-expression?

Two, they are the “elements” such as numerics (1 2 3.....9)
and character symbols (AB C. . . . Z). The other component is the
parenthesis (Fig. 13).

[1
(LEFT PARENTHESIS) (RIGHT PARENTHESIS)
FUNCTION
(19 | |BLANKS [| AZ | [COMMAS| | naves >
ELEMENTS

S-EXPRESSIONS
Fig. 13.

What do you call the numerics and symbols in LISP?

They are called ATOMS.

Is every expression that contains ATOMS and
parentheses an S-expression?

No, an S-expression only exists if certain rules are followed.

Are the following examples S-expressions?

(TIMES V N))

)PLUS 4 5)

(DIFFERENCE A B)

The first two are not S-expressions because the first example
ends in two parentheses and the second has a reversed first paren-
thesis. The third expression is indeed an S-expression.

How do you define an S-expression?

An S-expression is made up of ATOMS and parentheses.
There must be a balance between the number of left parentheses
and the number of right parentheses. There must be no reversal of
parentheses and the parentheses must not be in the wrong spot.

14

Is there another important aspect of the S-expression?
Yes, you must also consider the blanks. In BASIC and in
FORTRAN blanks are ignored. But in LISP blanks are very impor-
tant to the operation of the functions.
What are blanks used for?
Blanks are used to separate arguments.
Can anything else be used instead of blanks in LISP?
Commas can be used instead, but most programmers prefer to
use blanks.
In what ways can commas replace blanks?
A comma can be placed in any spot where a blank would have
been (Fig. 14). The following examples will explain:
(TIMES C B).......... (TIMES, C B)
(TIMES C,B)
(TIMES,C,B)

Fig. 14.

LIKE CLASSICAL PHYSICS, A LISP ATOM
CAN NOT BE DIVIDED TO ANYTHING SIMPLER

Can more than one blank be used in a given place and
can blanks ever be left out?

In most programming languages, a string of blanks can be
inserted anywhere providing at least one blank is required in the
first place. Blanks can also be left out before or after a left or right
parenthesis.

Are the following two S-expressions legal in LISP?

(TIMES (SIN (DIFFERENCE (TIMES X X) 4)) (QUO-
TIENT AB))

(TIMES (PLUS X C) H (PLUS A B) PLUS R T))

Yes, they are both legal and acceptable in LISP. Only the
number of blanks have been increased. The following S-expression
is legal because only the blanks before the left and right parenth-
eses have been removed:

(TIMES(PLUS X C) HPLUS A B)(PLUS R T))

15

Can the above rules be applied with any function in
LISP?
Yes, the rule applies to any construction in LISP.

ATOMS

What are the constants and variables in an
S-expression called?

They are called ATOMS

What rules do variables follow in LISP?

Variables follow the standard rule for identifiers. They must
be composed of letters or numbers and they must start with a letter
only.

What is the difference between variables in LISP and
in most other languages?

The major difference is in the upper amount of characters
permitted in the variable name. Most languages only allow a
certain amount of characters to be used. In LISP, any amount of

characters can be used in the construction of a variable name (Fig.
15).

OTHER
LANGUAGES Fig. 15.
SHORT VARIABLE NAME

LISP THIS IS A LONG VARIABLE NAME

Are there any special identifiers in LISP?

Yes, T, F and NIL.

What happens if you use one of these special (re-
served) identifiers?

Typically, the results will be unpredictable.

What are these reserved variables or identifiers used
for?

The T and F mean “true” and “false” respectively, while the

NIL has a number of uses.

What are the uses of the NIL in LISP?

Most of the uses of NIL will be covered later, but one is worth
mentioning now. Quite often in LISP, NIL is used to replace or
substitute for F. Actually, F is not used very often to mean “false”.
NIL is used instead.

16

