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Introductory remark

We shall be concerned with relations of analytic pro-
perties of classical potential theoretic operators to the
geometry of the corresponding domain in the Euclidean m—

-space RT s, m 22 ,

Let us recall that a function h is termed harmonic
in an open set G(:‘Rm if it is twice continuously diffe-
rentiable in G and satisfies there the so-called Leplace

equation

m
~ 2
Ah=Z’aih=0,
i=1

where Di denotes the partial derivative with respect to
the i-th variable. (In fact, such a function h is necessa-
rily infinitely differentiable and even real=-analytic; this

is usually proved in elementary theory of harmonic functions
on account of the Poisson integral which will be derived in
the example following theorem 2.19.) If we try to determine

& bharmonic function in R™ ~ {0] of the form h(x) = w(lxl) ,
where (v 1is an unknown fmnction with a continuous second de-
rivative in ]0,+<v[ CfR1 s We obtain an ordinary differential
equation

dza)ér2 + m=1 dcogrz =0

dr r dr



whose solutionsare

e 4 in case m > 2 ,

w(r) = <

& log r +p in case m= 2 ,
where o, 4 are arbitrary constants.

Let us denote by A = Am the area of the unit sphere

in R®, i.e.
A = ——1———
- r‘(z‘ m)

where "(.) is the Euler gemma-function, and put for x €
€ R"~ {0}

l2-m

Cm)x if mo>2,
ho(x)=<

d leg e if m=2

E %8 T :

As we shall observe later, with this normalization - ho
represents a fundamental solution of the Laplace equation
which means that, in the sense of distribution theory,

= éxho = J; 5

where J; is the Dirac measure (= unit point mass situated

at the origin). For m = 3 +the function hO occurred first

in physics; according to the Newton gravitation law (or

Coulomb’s law in electrostatics) the vector-valued function
X > grad ho(x)

describes the force-field of a point mass (or a point charge)

placed at the origin.

The function hz defined by



ho(x-z) for x # z ,
h,(x) =

+ 00 for x =12,
is sometimes called the fundamental harmonic function with
pole at 2z . It follows from the above remark that hz is,
up to additive and multiplicative constants, the only har-
monic function in RT N~ {z} whose values depend on the dis-
tance from 2z only. If G CRm is open, then all the func-
tions h, with 2z € R" N G as well as their directional
derivatives

X > n.grad, hz(x)

(where n € R™) are harmonic in G . The idea of using
"combinations" of these simple functions for generating
more complicated harmonic functions in G is classical.
By "combinations" here we mean not only discrete combina-

tions but in general the integrals of the form

(1) Wy(x) = jhz(x)dv(z) s
gR

(2) Wy (x) = jn(z).gradx hz(x)d»’(z) s
RM

where Y 1is a signed measure with support in R®~ G and
z +—3n(z) 1is a suitable vector-valued function with values
in R™ . In classical potential theory G 1is usually suppo-
sed to have a smooth boundary B with area element ds and

Y 1is taken in the form d¥ = fds , where f is an appro-



priate function on B , while n(z) is usually chosen as the
unit normal to B . The integrals of the form (2) are then
called the double layer potentials and proved to be useful in
connection with the Dirichlet problem which reads as follows:
Given a continuous function g on B , determine a harmonic
function h in G such that 1lim h(x) = g(z) for every
xc@

z € B. If h is teken in the form of a double layer poten=—
tial (2) with the above described specification for n and
dvy = fds , then evaluation of the limit at 2z € B 1leads to

an integral equation of the second kind
£(z) + gK(z,y)f(y)ds(y) = 2g(z)

for the unknown density f . In a similar way, the so-called
single layer potentials (1) are useful in treating the Neumann
problem which is formulated as follows: Given a function g
on B , determine a harmonic function h in G such that

1lim n(z)-grad h(x) = g(z) for every z € B, where n(z) is
xed |
the unit exterior normal to G at 2z . If one tries h = Uv
with d» = fds , this problem again reduces to an integral
equation of the second kind for the unknown demnsity £ and
the kernel of the corresponding integral operator is transpo-
sed to the kernel resulting from the Dirichlet problem for

the complementary domain. Historically it was this method of
treating boundary value problems in potential theory that led
to the development of the Fredholm theory of equations of the
second kind. In its classical formulation the method is tied
up with certain a priori smoothness restrictions on the boun-

dary of the domain, because the normal derivative occurs in
A}

the definition of double layer potentials and in



the formulation of the Neumann problem. These restrictions
may be entirely avoided, however, if the normal derivative
is characterized weakly. Normal derivatives of single layer
potentials as well as double layer potentials may then be
introduced and investigated for general open sets G C g™
without any a priori restrictions on the boundary. Some re-
sults in this direction together with their applications to

boundary value problems will be described below.



§ 1

Weak normal derivatives of potentials

We shall denote by & = 2 (R™) the class of all in-
finitely differentiable functions with compact support in

R® .

1.1, Definition. Let h ©be a harmonic function in

an open set G (C R® and suppose that

J |grad h(x)|dx < <«
P

for every bounded open set PC G . Then F§h = NGh will deno-

te the functional over @ defined by
{ ¢ N> = /grad z{(x)-grad h(x)dx , €D .
G
Nh will be termed the generalized normal derivative of h .
Remark. The reason for this terminology lies in the

fact that, in the case when G is hounded by a smooth closed

surface B with area element ds and exterior normel n =

(n1, ...,nm) and when the partial derivatives Bih (i

= 1,...,m) extend from G to continuous functions on the

whole G U B , the Gauss-Green formula yields

m
< ¢,fh> = f L/(Zni 2;h)s , €9,
B i=1

Consequently, Nh is a natural weak characterization of the



m
normal derivative Zn. o9.h = B .
553 1 'an
i=1

1.2. Remark. If G and h have the meaning described

in the definition 1.1, then < ¢,N°h> = 0 for every ¢ &
€ 9 whose support does not meet the boundary of G . In
other words, the support of I\TGh is contained in the boun-

dary of G .

Proof. Suppose that the support of ¢ € Y does not

¢ in
G, #=0 on R*~G.Clearly, ¢ € D and if h is

meet the boundary of G and define ? so that ‘7

any twice continuously differentiable function on R™ coinci-

ding with h near the support of ¢ , then

jgrad ¢ (x)-grad h(x)dx = jgrad ?(x)-grad ﬁ(x)dx =
& R™

=~f ¢ (x)Ak(x)ax = 0 ,
Rm
s l\h/=

because 4 A 0 everywhere.

1.3. Notation. The ball of radius r and center y

in R® will be denoted by
Nryy)= N (y) ={x €R% |x-yI <r}.
For M CR®™ we denote by diam M the diameter of M, by

cl M the closure of M , and by 7Ck(M) the (outer) k-di-

mensional Hausdorff measure of M . Let us recall that



R

£
VOk(M) = lim %k(m) s
£ — 0+
where
%i(m) . 2‘kvk inf Z; (diem Mn)k

with the infimum taken over all sequences of sets Mn C r®
such that diam M £ ¢ and gun DM and with '
k

N

k5 e
equal to the volume of the unit ball in k-space. The normali-
zation is chosen in such a way that %m(M) coincides with
the outer m-dimensional Lebesgue measure of M ; if M is a
simple smooth k-dimensional surface in - , then %k(m)
coincides with the area of M . (Basic facts concerning Haus-

dorff measures may be found in the monograph [Ro] )

By a signed measure we mean a finite G -additive set
function defined on the G -algebra of Borel sets in R™ .
If Y 1is a signed measure and M C R®” is a Borel set, then
[¥] (M) denotes the total variation of ¥ on M ; we put
(Wii= 1”1 ®" . If BCR®™ is compact, we denote by ZI(B)
the linear space of all signed measures  with [V|(R®\B) =
=0, i.e. with support in B ; 8/(3) is a Banach space if
equipped with the norm |[l...]| . The abbreviation spt ¥
(spt Poaene ) will denote the support of ¥V (support of ¢,... )
If ¥ € ¢/(B) , then the potential % V(x) defined by (1)

is meaningful for all X € R® N B and represents a harmonic



function in R™N B . The symbol d;, will denote the Dirac
measure defined by

1 if y €M,

g () =
¢ <0 if yéM

on Borel sets M C R™ . Thus ’M/J‘y =h_ on R™ . We put

y
F={x €R™ i1xi = 1}, so that A = Ho ()

1.4. Remark. The following elementary transformation
formule will be often useful below:
If g is an integrable function on R™ and 2z € R® is

fixed, then the function
(=]
@ — ftm'1g(z+t 8)dt
0

is defined for &

n—-81008t every 6 €', is integrable
d'?Cm__1 and

co
jg(x)dx =/ (jtm“1g(z+t9)dt)dxm_1(9) .
R™ F o

Remark. If B CR® is compact and VY € ff/(B) , then
for x ER®\ B

lgrad %y (x)| £ %flx-zl"mdh)l (z) ,
B

whence we get for any bounded Borel set P CR®\ B

_(|grad Uv(x)ldx & % f (flx—z”'m dx)d Ivi(z) &
P B P



10

£diam (P UB) vl < oo,

We see that if G CR™ is an open set with a compact boun-
dary B , then NG%V (taken in the sense of the defini-
tion 1.1) is available for every Vv € £'(B) .

Example. Fix z € R' and let G = R"\ {z}, B= {3z},
v = d“z . Employing the transformation formule in 1.4 one

gets easily for ¢ € 2

< z{,NGﬂ/ iz> = j grad Y(X)-grad hz(x)dx =
Rm\{z}

='11T j PR grad f(x)- ZX_ dx = ¢ (z) .
lz=x|
RR

We see that NG U fz = {z in this case.
Noting that
jgrad ¢ (x)-grad hz(x)dx = - j A?(x)hz(x)dx
R™ R™

we may rewrite the above equality in the form

[ A¢@max = - 72, « €.
an
This means that, in the language of distribution theory,

An,=-6, .

1.5. Observation. If G (C R® is an open set with a

compact boundary B and ¥ € ¢’ (B) then, for any ¢ € D,



1"

(3) <<f,NGtLv> = Bf(y,NGu, {y>dv(y) .

Proof. PFix Y € J and put c¢ = sup|grad lf(x)l,
P =GN spt ¢ . Elementary calculation yields the estimate

(4 jf 'grad ¢ (x)-grad hy(x)ldxdlvi(y) =]
GxB

< c diam (P U B) IV

which shows that the double integral

(4,) ff grad ¢ (x) grad hy(x)dde(y)
G xB
converges. It remains to apply Fubini’s theorem and note that

the two repeated integrals derived from (42) occur in (3).

1.6. Some questions. Let G CR® be an open set with

& compact boundary B . For every ¥ € ¢'(B) we have then
the generalized normal derivative NG Uy of the correspon-
ding potential defined as a functional over D . If there

is a signed measure M such that

<y uwy > = de(w, 7 €D,
™
then we shall say, as usual, that NG'%v is a measure and
write NG%V = MW ; in this case necessarily A € ¢’ (B)

by remark 1.2. In general, however, NG‘UIV need not be a



12
measure. We thus arrive naturally at the following

Question 1. Under which conditions on G can we assert
that NC%v € ¢/(B) for every vV € ¢(B) 2

Our main objective in this paragraph is to answer this
question in geometric terms connected with G . Before doing

so we shall investigate the following simplified problem.

Question 2. Let y € B be a fixed point. What geome-
tric conditions on G guarantee that NCU Jy € ¢(B) 2

In order to be able to answer this question we first
introduce suitable terminology and establish several auxi-

liary results.

1.7. Definition, Let S, MCR™ . A point y € S will
be termed a hit of S on M if for every r >0 both

(. (3)N sSNM) >0 and K, (N (y)N (5~M) >0 .

(In our applications S wusuaelly will be a straight line

segment or a half-line.)

1.8. Lemma. Let M C R1 be a Borel set and denote by

7CM its characteristic function on R1 « If & < b, then

b
(5) swp{ [z 0)y (0av; yeDd , lypizn,

a
spt ¥ C Ja,b[ }
equals the total number of hits of Ja,b[ on M (which is

+ o0 if the set of all hits of Ja,bl on M is infinite).
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Proof. ILet q be the number of all hits of Ja,bl on
M . Suppose first that q < + @ and let 8y < ooe <aq
be 211 the hits of Ja,b[ on M . Then no ]aj,aj+1[ can
meet both M eand R1 ~ M in a set of positive linear mea-
sure. It follows that either M or Ja,b[ ~M is ¥, -equi-
valent with

U]aZk-‘l'aZk[ , where 12k, 2k £q .
k

If v € 92 and spt ¥ C Ja,b[ , then

b q )
[ oy ¥/ (et = 2 Z(-T)J}V(aj)
a J=

and the supremum (5) equals q .

Next suppose that the supremum (5) is finite. This
means that the functional

b
L : 1Vt—>f pM(t)vf' (t)dt
a

is bounded on the space 9 (Ja,b[) of all infinitely dif-

ferentiable functions V¥ with spt w C Ja,b[ with res-

pect to the norm Jl/ll = sup !4 (t)| . Referring to the Hahn-
T

-Banach extension theorem and Riesz representation theorem
we conclude that there is a function g of bounded varia-
tion on ]a,b[ such that

b b
<y,i>= [yde=- [y (ar, ¥ € D (TaydD) .
a a



