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PREFACE

This text is a detailed version of material presented
by both of us in seminars and lectures in the theory group
of this department. Except for parts of Chapters 9 and 10
the material has also been covered in a series of seminars
by one of us (M.-K.) in the Department of Physics of the
University of Adelaide, Adelaide, Australia, in August and
September 1985 and in the Department of Physics of Shanxi
University, Taiyuan, China, in March and April 1987. The
interest and criticism of the audiences at these depart-
ments and, in particular, the support and enthusiasm of
Professor A.W. Thomas (Adelaide) and Professor Zhang Jian-
zu (Taiyuan) are gratefully acknowledged.

The text was compiled with the belief that the
majority of potential readers is more interested in actu-
ally using or applying supersymmetry in some model theory
than in painstakingly rediscovering the results of others
for themselves. It seemed plausible, therefore, to revise
various relevant concepts and in particular, to include
the proof or wverification of almost every formula. In this
way the reader can select the problems he wants to tackle
himself, compare his solutions with the calculations given
here, and thus gain the confidence in his own calculations
which he needs for his discussions of supersymmetry in
other contexts. It has been our experience that (except for
the last two chapters) the material presented here can be
covered in a one-semester course for graduate or post gra-
duate students with some knowledge of field theory.
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In compiling this text we have, of course, used pre-
vious reviews. The choice of our sequence of topics was
motivated by the lecture notes of Legovinij. Standard
texts which we have consulted are the monograph by Wess
and Bagger2 and the review by Fayet and Ferrara3. For the
detailed treatment of the on-shell Wess-Zumino model we
consulted the lecture notes of de Roo4. In the text we do
not discuss any experimental signatures of supersymmetry.
For an introduction into this topic we refer to articles
by Haber and Kane5’6; further details can be found in the
Proceedings of the Thirteenth SLAC Summer Institute on
Particle Physics7 and in the reviews by Nilles8 and Dra-
gon, Ellwanger and Schmidtg. As further general references
we refer to the nontechnical review by Wess1o, to a very
brief review of topics covered here by Campbell and Fogle-
man11 and to the lectures of Wess12, Ferrara13 and Witten1?
A more advanced text is the book by Gates, Grisaru, Rocek
and Siegel15. The very readable review by Sohnius16
appeared after completion of the first draft of our text.
Meanwhile several other texts have been published, each,
however, with its emphasis in a different direction. We

refer here to the books by West17, Srivastava18 and

Freund19. For more specific topics we refer to the artic-
le by Salam and Strathdee20 to the Proceedings of the
28th Scottish Universities' Summer School in Physic521,
and to the Proceedings of the NATO Advanced Study Insti-
tute on Supersymmetryzz. All considerations of this text
refer to a four-dimensional Minkowski space. For the ba-
sic technicalities in the context of supersymmetric quan-
tum mechanics we refer to the work by Cooper and Freed-
man23, whereas those of two-dimensional field theories can

be found in reference 24.



INTRODUCTION

Xi

Symmetries are of fundamental importance in the descrip-

tion of physical phenomena. In the realm of particle phy-

sics symmetries are believed to permit ultimately a classi-

fication of all observed particles. A fundamental symme-
try of particle physics, which has been firmly established
both theoretically and experimentally is that of the Poin-
caré group, i.e. of rotations and translations in four-
dimensional Minkowski space. Besides this fundamental
symmetry there are other socalled internal symmetries
(such as the symmetry of the SU(3) flavour group) which
have also been firmly established over the last few deca-
des, although their manifestation in Nature is not exact.
As is well known, the consistent search for more fundamen-
tal symmetries led to the development of nonabelian gauge
theories and the spectacular experimental confirmation of
several predictions of the latter in recent years.

In the course of time several attempts have been made
to unify the space-time symmetry of the Poincare group
with the symmetry of some internal group. Such attempts
have, however, been shown to be futile if the theory,
which necessarily has to be a quantum field theory, is
expected to satisfy certain basic requirements. In fact,
the socalled "no-go" theorem of Coleman and Mandula 25
shows that if one makes the plausible assumptions of
locality, causality, positivity of energy and finiteness
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of the number of particles (and one more technical assump-
tion) the invariance group of the theory can at best be
the direct product of the Poincare group and a compact
(internal) group, and this therefore does not offer a
genuine unification of one group with the other.

Now the generators of the Poincaré group satisfy well
known commutation relations, and Noether's theorem relates
these to conserved currents. In their turn the conserved
currents are functions of relativistic fields. The commu-
tation relations of the field operators which quantize
these fields are therefore directly related to those of
the generators. It was realized by Wess and Zumin02§27
if one allows also anticommutation relations of generators
of supersymmetry transformations which transform bosons
into fermions and vice versa, then the unification of
the space-time symmetries of the Poincare group with
this internal symmetry can be achieved. The formal proof
of this discovery, i.e. the proof that anticommuting gene-
rators which respect the other assumptions of the theorem
of Coleman and Mandulazsdo exist, was established by
Haag, Lopuszanski and Sohniusz.

Supersymmetry thus arises as a symmetry which combines
bosons and fermions in the same representation or multiplet
of the enlarged group which encompasses both the transfor-
mations of the Poincaré group and the appropriate super-—
symmetry transformations. Thus every bosonic particle
must have a fermionic partner and vice versa. In view of
the fact that such a spectrum of particles is not compa-
tible with observation, supersymmetry must be badly broken
at the level of presently available energies. Clearly
only experimental observation can decide whether super-
symmetry is indeed inherent in Nature. It can be argued
that one of the most immediate ways to observe evidence
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of supersymmetry is to see if there is a missing energy
and momentum in the final e+e_ spectrum of the reaction
e++e_——)""' —75++%_ —_— e++e_+s;'+§:
where E+,'E— and i; are the supersymmetry partners of e+,
e and Y respectively. If there is such a missing energy
and momenEPm it could be that carried away by the neutral
photinos § (charged supersymmetry particles at energies
presently available would have been detected long'ggO).
Since supersymmetry must be broken, the photinos ¥~ would
not be massless.

However, supersymmetry does not only open the possi-
bility of a much more complex spectrum of particles than
heretofore envisaged; supersymmetry also has some intri-
guing theoretical consequences which could make it a
desirable symmetry. It is well known that a realistic
quantum field theory in the traditional sense is plagued
by the problem of ultraviolet divergences and the conse-
quent necessity of renormalization. Supersymmetry, how-
ever, provides a mechanism for the cancellation of such
divergences in view of the same number of bosonic and
fermionic degrees of freedom in each particle multiplet.
Clearly such a built-in cancellation of divergent terms
is a highly desirable feature of a guantum field theory.

In Chapter 1 we begin with a recapitulation of basic
aspects of the Lorentz group, including a discussion of
Casimir operators and the classification of representa-
tions in terms of their eigenvalues. We then consider
the group SL(2,C) and its basic representations, i.e. the
self-representation and the complex conjugate self-repre-
sentation. The elements of the appropriate representa-
tions spaces are the undotted and dotted Weyl spinors.

In view of the importance of Weyl spinors throughout the
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entire text, we consider these here in more detail than is
generally done in the literature. We then introduce the
concept of Grassmann number and perform some basic manipu-
lations involving Weyl spinors, thereby deriving a number
of useful formulae. In the subsequent section the connec-—
tion between SL(2,C) and the proper orthochonous Lorentz
group is established. It is then natural to discuss four-
component Dirac spinors and the Weyl representation. The
connection with two-component Weyl spinors is obtained by
introducing four-component Majorana spinors. Then again
various formulae are derived which are -useful in later
calculations.

Chapter 2 begins with a discussion of the "no-go"
theorems of Coleman and Mandulazsand Haag, Lopuszanski and
Sohniuszs.The latter leads to a consideration of graded
Lie algebras which we approach in successive steps by
defining first the characteristics of a Lie algebra, then
those of a graded algebra and finally those of a graded
Lie algebra, i.e. the properties of grading, supersymme-
trization and generalized Jacobi identities. As an
example we calculate the graded Lie algebra of the algebra
su(2,C). The final section of Chapter 2 deals with gra-
ded matrices and their properties.

Chapter 3 deals with the grading, i.e. supersymmetric
extension of the Poincaré algebra. We demonstrate expli-
citly that for the grading chosen all possible Jacobi iden-
tities are satisfied. Having established the algebra of
the Super-Poincaré group with the fermionic generators in
the Dirac four-component form, we then decompose it into
the appropriate relations of the Weyl two-component method.

In Chapter 4 we use the method of Casimir operators
to classify the irreducible representations of the Super-
Poincaré algebra, and it is shown that supersymmetry im-
plies an equal number of bosonic and fermionic degrees of
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freedom.

Chapter 5 deals with the most immediate field theore-
tical realization of the Super-Poincaré algebra, the Wess-
Zumino model, which is a field theory involving a scalar
field, a pseudoscalar field and one spinor field, all
with the same mass. We demonstrate by explicit calculation
that the spinor charges of the theory, considered as linear
operators in Fock space, satisfy the commutation and anti-
commutation relations of the Super-Poincaré algebra.

In Chapter 6 we introduce the concepts of superspace
and superfields, and define differentiation with respect
to Grassmann numbers. Then three different but related
operators are constructéd which describe three different
but equivalent actions of the supersymmetry group on func-
tions in superspace. These operators define three diffe-
rent types of superfields. By considering infinitesimal
supersymmetry transformations we obtain the corresponding
three differential operator representations of the fermi-
onic generators of the Super~Poincare group. Then cova-
riant derivatives are introduced as a prerequisite for
the construction of manifestly supersymmetric action inte-
grals. These covariant derivatives also permit the defi-~
nition of projection operators. The search for irredu-
cible representations of the Super-Poincar€ algebra then
becomes a search for solutions of constraint equations
expressed in terms of these projection operators. The
final section of Chapter 6 is devoted to the derivation of
the explicit supersymmetry transformations of the component
fields of the supermultiplet. 1In this context it is seen
that the highest order component field always transforms
into a total Minkowski derivative and thus is a candidate
for a supersymmetric Lagrangian density.

In Chapter 7 we begin with an investigation of the con-
straint equations which define left-handed and right-
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handed chiral superfields (also known as scalar super-
fields). Then vector superfields are defined by an appro-
priate constraint equation, and the supersymmetric gene-
ralization of the abelian gauge transformation is discus-
sed. Finally left-handed and right-handed spinor super-
fields are discussed which represent the components of the
supersymmetric field strength for an arbitrary vector su-
perfield.

Chapter 8 deals with the construction of supersymmetric
action integrals. We begin with the definition of inte-
gration over Grassmann numbers. Then Lagrangians are con-
structed from scalar superfields and from vector super-
fields (i.e. the supersymmetric field strength). The case
of the former is shown to contain the Wess=-Zumino model
as a special case, whereas the case of the latter yields
the supersymmetric generalization of the pure Maxwell
theory (i.e. with no interaction with matter fields) which
contains in addition to the massless vector field also the
massless spinor field of the photino.

Chapter 9 deals with the spontaneous breaking of su-
persymmetry. For the convenience of discussions the con-
cept of superpotential is introduced. 1In view of the ne-
cessity of evaluating action integrals over superspace
an equivalent and convenient Grassmann projection tech-
nique is developed. Some general aspects of spontaneous
symmetry breaking are then discussed and, in particular,
the Goldstone theorem is established for the general case
of the breaking of supersymmetry or some other symmetry.
Finally the O'Raifeartaigh model, which is a specific
theory involving three scalar superfields, is c¢onsidered
and the spectrum resulting from the spontaneous breaking
of supersymmetry is investigated. 1In this case super-
symmetry breaking results from the nonvanishing vacuum
expectation value of some auxiliary field of a superfield.
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Finally, in Chapter 10, we consider supersymmetric
gauge theories. Introducing first global and local U(1)
gauge transformations of scalar superfields and the cor-
responding supersymmetric version of minimal coupling, we
consider super quantum electrodynamics. We then investi-
gate the Fayet-Iliopoulos mechanism of spontaneous brea-
king of supersymmetry in which the latter results from the
nonvanishing vacuum expectation value of the highest order
component field of a vector superfield. The last section
contains a brief introduction to nonabelian gauge trans-
formations for superfields with the appropriate tensorial
transformation properties.
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CHAPTER 1

LORENTZ GROUP, POINCARE GROUP, SL(2.C). DIRAC AND MAJORANA
SPINORS

1.1 The Lorentz Group?®

A point in the space-time manifeold is denoted by (xf‘)

2 1 2 3

v x3) where x° = t and x , x°, x° are the

space components of the four-vector xW. The laws of

e} 1
= (x7, x , x

physics are invariant under the Lorentz group. Transfor-
mations of this group are linear transformations acting on
four-vectors

x'r = A, x” (1.1
leaving the quadratic form
x? = xPx
= ¢
= f(t,ﬂff‘;:"

(xo)*—(2)* (1.2)
invariant, i.e.

a Sections 1.1 and 1.2 serve mainly the purpose of com-
pleteness, to define notation and to recollect some formulae
which will be needed later in the text. The reader

familiar with Sections 1.1 and 1.2 could start imme-
diately with Section 1.3



