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Editorial Policy

for the publication of monographs

In what follows all references to monographs, are applicable also to multiauthorship
volumes such as seminar notes.

§ 1. Lecture Notes aim to report new developments - quickly, informally, and at a high
level. Monograph manuscripts should be reasonably self-contained and rounded off.
Thus they may, and often will, present not only results of the author but also related work
by other people. Furthermore, the manuscripts should provide sufficient motivation,
examples and applications. This clearly distinguishes Lecture Notes manuscripts from
journal articles which normally are very concise. Articles intended for a journal but too
long to be accepted by most journals, usually do not have this “lecture notes” character.
For similar reasons it is unusual for Ph. D. theses to be accepted for the Lecture Notes
series.

§ 2. Manuscripts or plans for Lecture Notes volumes should be submitted (preferably in
duplicate) either to one of the series editors or to Springer- Verlag, Heidelberg . These
proposals are then refereed. A final decision concerning publication can only be made
on the basis of the complete manuscript, but a preliminary decision can often be based
on partial information: a fairly detailed outline describing the planned contents of each
chapter, and an indication of the estimated length, a bibliography, and one or two sample
chapters - or a first draft of the manuscript. The editors will try to make the preliminary
decision as definite as they can on the basis of the available information.

§ 3. Final manuscripts should preferably be in English. They should contain at least 100

pages of scientific text and should include

- a table of contents;

- an informative introduction, perhaps with some historical remarks: it should be
accessible to a reader not particularly familiar with the topic treated;

- a subject index: as a rule this is genuinely helpful for the reader.

Further remarks and relevant addresses at the back of this book.
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Chapter 1

Introduction

1.1 Motivation—a maximal subgroups algorithm

These notes are concerned with the problem of explicitly constructing all primitive soluble
permutation groups of a given degree, with particular reference to those degrees less
than 256. In this section we explain the motivation for tackling this problem.

Suppose we have a group G given by a finite presentation. What we can learn about
G doesn’t really depend on G but rather on its presentation and the theoretical and
computational resources available. One might ‘rate’ presentations on a scale ranging
from ‘easy’, where we can answer every question we ask, to ‘impossible’; where we cannot
answer any of our questions. Where a presentation falls depends upon the resources at
hand. In a sense, group presentation theory is about extending our resources and thereby
shifting more and more group presentations towards the ‘easy’ end of the scale.

Four of the most basic questions one asks about a group given by a finite presentation
are:
— *‘Is the group finite?’;
— ‘If the group is finite, what is its order?’;
— ‘What kinds of quotients does the group have?’;
— ‘What kinds of subgroups does the group have?’.
Whether G is finite or not, knowledge of its quotients and/or subgroups can be very
useful in understanding its structure. The nilpotent quotient algorithm (see Newman
(1976)) computes special descriptions of the finite p-quotients of groups given by finite
presentations. This algorithm has proved to be an important tool, for example, in the
investigation of Burnside groups. The procedure of coset enumeration, systematised by
Todd and Coxeter (1936), allows one to compute the index in G of a subgroup H given
by finitely many generating words, provided that this index is finite. It must be stressed,
however, that the procedure is highly sensitive to the way in which G and H are specified:

for any given amount of computing resources there is a presentation which would cause
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every coset enumerator to run out of space, and yet the presentation can be seen by other
methods to define the trivial group.

In the early 1960s Sims developed an algorithm, based on coset enumeration, which
takes as input a group G given by a finite presentation and a positive integer n, and out-
puts a list containing one representative of each conjugacy class of subgroups of G whose
index is at most n. A similar algorithm was developed independently by Schaps (1968).
The algorithm is now known as the low index subgroups algorithm and implementations
of it are available in the group theory software systems CAYLEY (see Section 1.3) and
SPAS (see Felsch (1989)). To be very brief, the method consists of a carefully organ-
ised backtrack search through all possible ‘standardised’ closed coset tables of at most n
rows. A reasonably detailed description of the algorithm can be found in Neubiiser (1982,
Section 6, pp. 30-38). One problem with the method is that the backtrack search can
be very slow. Another problem is that, as already mentioned, the performance of coset
enumeration is sometimes very sensitive to the way in which G is specified.

Kovécs, Neubiiser and Newman (unpublished notes) have proposed an algorithm which
computes certain mazimal subgroups of low index. The algorithm takes as input a group
G given by a finite presentation and a positive integer n, and outputs a list containing
one representative of each conjugacy class of maximal subgroups M of GG whose index is
at most n and such that G'/coreg(M) is soluble. While this algorithm is not as general as
the low index subgroups algorithm, it is hoped that the method will be more efficient and
therefore capable of yielding information for larger values of n than is currently possible.
In what follows I give an outline of the proposal. Note that the algorithm has not been
developed in detail.

If H is a subgroup of finite index n in G, then the action of G on the cosets of H
yields a homomorphism from G to S,, the symmetric group of degree n. The image of
the homomorphism is transitive and the kernel is coreg(H).

If A and B are groups, denote by Sur(A, B) the set of all surjective homomorphisms
from A to B. Note that Aut(B) has a natural action on this set via post-composition.

The following theorem contains an outline of the Kovacs et al. proposal.

1.1.1 Theorem. Let G be a group given by a finite presentation and let n be a positive
integer. Suppose we have the following:

(i) a ‘primary’ list comprising one member from each isomorphism class of groups which
have a faithful primitive permutation representation of degree at most n;

(i1) for each group on the list, a ‘secondary’ list comprising one member from each of its
conjugacy classes of core-free mazimal subgroups of index at most n;

(ii1) for each group on the primary list, its automorphism group;

(iv) an algorithm which, given a group H on the primary list, finds one member from each
Aut(H)-orbit of Sur(G, H);
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(v) an algorithm for constructing the complete inverse image under such a homomorphism
of any given group on a secondary list.
Then the following steps constitute an algorithm for locating exactly one member from
each conjugacy class of mazimal subgroups of G of index at most n:
initialise the set M to the empty set;
for each group H on the primary list do:
compute a set S of representatives of the Aut(H)-orbits of Sur(G, H);
for each surjection o € S do:
for each group K on the secondary list for H add Ko=' to M.

Proof. Let M be a maximal subgroup of G of index m < n. Then the action of G on the
cosets of M gives rise to a primitive permutation representation p : G — S,, whose kernel
is coreg(M). Hence Gp is isomorphic to a group H on the list, say Gpf = H, where 0 is
an isomorphism from Gp to H. Furthermore, M pf is a core-free maximal subgroup of H
of index m and so H-conjugate to one of the groups K on the secondary list for H. Thus
the complete inverse images of Mp# and K are conjugate in G. Therefore the algorithm
produces a subgroup K6~ !p~! of G conjugate to M.

Now suppose we have surjective homomorphisms o; : G — H; (i = 1, 2), where each
H; is on the primary list, and a group K; on the secondary list for H; such that Ko7'
is conjugate to Kyo;'. It follows that the cores of K 07! and K,0;' are equal, that
is, kero; = keroy, whence H; = H,. Hence H, = H,. Therefore the map o : H; — H;
defined by (go1)a := go is well-defined and an automorphism of Hy, that is, oy and o, are
in the same Aut(H;)-orbit. Thus the algorithm produces pairwise non-conjugate maximal

subgroups M of G of index at most n. m

The algorithm could be modified to look for any subgroup of low index by replacing
the word ‘primitive’ in item (i) by ‘transitive’ and by deleting the word ‘maximal’ in item
(ii). However, the compilation of such a primary list would rapidly become unfeasible:
since the regular representation of a group is transitive, the primary list would have to
contain at least as many groups as there are isomorphism types of groups of order at
most n. (The lower bound of Higman (1960) shows that there are at least eight million
groups of order 512.) In addition, one would have to know the automorphism groups
and core-free subgroups of all these groups. By contrast, relatively few groups have
faithful primitive permutation representations, and those which do are of a quite restricted
form. This suggests that it is reasonable to attempt the compilation of a primary list of
primitive permutation groups. Dixon and Mortimer (1988) have determined the primitive
groups of degree less than 1000 that have insoluble socles. Further details about lists of
primitive permutation groups are given in the next section. We finish this section with

some miscellaneous comments.
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Kovacs, Neubiiser and Newman do not propose an algorithm for calculating Sur(G, H)
when H is insoluble. Consequently, they envisage the primary list as consisting of all
soluble groups having a faithful primitive permutation representation of degree at most n,
and the output of the algorithm as consisting of one representative of each conjugacy class
of maximal subgroups M of G of index at most n such that G/coreg(M) is soluble. This
makes the compilation of the secondary lists particularly easy because every soluble group
which has a faithful primitive permutation representation has a unique conjugacy class of
core-free maximal subgroups, namely the point stabilisers (and the action on the cosets
of any one of them yields the only isomorphism type of faithful primitive permutation
representation of the group). Furthermore, the automorphism group of a primitive soluble
permutation group is isomorphic to its normaliser in the relevant symmetric group. Hence
the computation of automorphism groups amounts to the computation of normalisers in
permutation groups (a seemingly less difficult problem).

The algorithm envisaged for the calculation of Sur(G, H) is based on Plesken’s epi-
morphism lifting algorithm for soluble groups (Plesken (1987), Holt and Plesken (1989,
Section 7.3, pp. 347-349)). This means that the primary list would have to be supple-
mented by certain quotients of primitive soluble groups.

The idea of looking for homomorphisms from a given group to groups on some list is
illustrated in Havas and Kovacs (1984), where metacyclic quotients of some knot groups
are computed.

Koviécs et al. also propose an algorithm for computing the intersection of those max-
imal subgroups M of G such that M/coreg(M) is on the primary list. This would give a
canonical Frattini-free soluble quotient of G, and its computation forms the first step in
their proposed soluble quotient algorithm.

Finally, I repeat that everything said so far about the algorithms proposed by Kovécs
et al. are outlines. Not many technical details have been worked out, and implementations

are likely to be a long way off.

1.2 Primitive permutation groups

Permutation groups arose out of the study of roots of polynomials, but soon became
objects of independent interest. Early researchers were interested in listing all permutation
groups of a given degree. The highest degree for which such a list was made is 11 (Cole
(1895), Miller and Ling (1901)). The intransitive groups of a given degree arise (in a
suitable sense) from transitive groups of smaller degrees. Consequently, transitive groups
received more attention than intransitive ones; lists of all of them were made up to
degree 15 (Miller (1897a), Martin (1901), Kuhn (1904)). In a similar way, the imprimitive

transitive groups of a given degree arise from primitive groups of smaller degrees. In the
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early 1970s Sims, with the aid of a computer, prepared a list of all primitive groups up to
degree 50. Previously the primitive groups had only been listed up to degree 20 (Bennett
(1912)). Worthy of special mention is Jordan (1871a), who determined the number of
conjugacy classes of primitive maximal soluble permutation groups for all degrees up to
one million. A detailed account of the history of listing permutation groups can be found
in Appendix A.

The socle of a primitive permutation group is of fundamental importance. This is
exploited in the O’Nan-Scott Theorem (see Liebeck, Praeger and Saxl (1988)), in which
primitive groups are classified into types according to the structures of their socles and
the intersections of these with point stabilisers. Broadly speaking, primitive groups divide
naturally into two types: those with insoluble socles, and those with soluble socles. As
mentioned in the previous section, Dixon and Mortimer (1988) have determined all groups
of the first kind whose degree is less than 1000.

If a primitive permutation group has soluble socle, then the degree of the group is
a prime power, p" say. Furthermore, the socle is elementary abelian of order p*, and
is complemented. The socle may then be treated as an n-dimensional vector space over
GF(p), and every complement as an irreducible subgroup of GL(n,p). Consequently,
the study of primitive permutation groups with soluble socles reduces to the study of
irreducible subgroups of GL(n,p). This reduction is essentially due to Galois.

The irreducible subgroups of GL(n, p) also divide naturally into two kinds: those that
are insoluble, and those that are soluble. There are many results concerning irreducible
insoluble subgroups of GL(n,p), but complete lists of groups of this kind seem to be
scarce, especially for p > 2. The irreducible insoluble subgroups of GL(n,2) have been
listed for n < 10 (Kondrat’ev (1986b)). The only direct attempt at listing irreducible
soluble subgroups of GL(n,p) seems to have been by Harada and Yamaki (1979), who
count the irreducible soluble subgroups of GL(n,2) for n < 6. However, in light of the
theorem of Galois mentioned above, Sims’ list of primitive permutation groups of degree
up to 50 indirectly yields a list of the irreducible soluble subgroups of G L(n, p) for p* < 50.
Consequently, and since the determination of the subgroups of GL(1,p) is a trivial matter,
the irreducible soluble subgroups of GL(n,p) are known for p” < 81. The history of listing
linear groups is reviewed briefly in Appendix A.

These notes investigate the irreducible soluble subgroups of G L(n, p), or, equivalently,
the primitive soluble permutation groups. Although these groups have not featured exten-
sively in lists, there is in fact a very large body of theory about their structure. During the
years 1861-1917 this theory was developed almost single-handedly by Jordan, who was
inspired by Galois’ work on primitive soluble permutation groups and their connection
with polynomials soluble by radicals. Jordan’s work seems to have attracted very little

interest until 1947, when Suprunenko began publishing papers containing extensions of it
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to the case of arbitrary fields. Suprunenko also formulated Jordan’s results in more mod-
ern notation. Since that time a number of people, such as Dixon (1971), have contributed
results to this theory.

These notes have two main objectives, both of which are motivated by the Kovacs et
al. proposal for a maximal subgroups algorithm discussed in the previous section. One
of these objectives is to develop efficient algorithms that take as input a positive integer
n and a prime p, and produce a list of the irreducible soluble subgroups of GL(n,p). The
other main objective is to execute these algorithms for those n and p such that p* < 256,
and to provide electronic access to the list of groups so obtained. A secondary objective

is to ‘match’, as far as possible, the list of Dixon and Mortimer mentioned above.

1.3 Summary of contents

As mentioned in the previous section, the primitive soluble permutation groups are in one-
to-one correspondence with the irreducible soluble linear groups over finite prime fields. In
Chapter 2 we exhibit that correspondence in detail, and then proceed to investigate groups
of the latter kind. First we summarise the relevant parts of the theory already developed
by Jordan and Suprunenko regarding the structure of maximal irreducible soluble linear
groups over finite fields. Then we extend that theory as necessary to accomplish the two
main objectives stated in the previous section. Table 1.1 shows the primes p and positive

integers n for which p* < 256.

Nk |lWwliNn|=]|S
o
~ =
w

2, ..., 251
2,...,13
2,3,5

Table 1.1: The values of p and n for which p* < 256

In Chapters 3, 4 and 5 we investigate the irreducible soluble subgroups of GL(2,IF),
where IF is any finite field. These investigations lead to a list containing exactly one group
from each conjugacy class of irreducible soluble subgroups of GL(2,IF).

Chapter 6 presents some results about the maximal irreducible soluble subgroups
of GL(q,IF), where ¢q is an odd prime. The irreducible soluble subgroups of GL(3,3),
GL(3,5) and GL(5,3) are determined.
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In Chapter 7 we determine the imprimitive soluble subgroups of GL(4,2) and GL(4,3).
We carry out this determination with the help of an algorithm that has been implemented
in the group theory system CAYLEY (see below).

In Chapter 8 we develop some ‘listing’ theorems for the primitive soluble subgroups
of GL(4,IF) which are similar in nature to those found for GL(2, IF).

The algorithm developed in Chapter 7 is used again in Chapter 9, this time to find
the irreducible soluble subgroups of GL(6,2).

The final chapter discusses the provision of electronic access to the list of groups.
This requires a discussion of CAYLEY, which is a computer system that has extensive
capabilities in computing with groups. A full description of this system can be found in
Cannon (1984). CAYLEY has a language in which users can write their own programs.
An important kind of sub-program is a procedure. A procedure is simply a sequence of
instructions which one can invoke as part of a larger program. CAYLEY also has a facility
called a library whereby a user can contribute data and procedures to official releases of
the system. All users can then access this information and manipulate it according to
their own needs. For example, Sims’ list of primitive permutation groups mentioned in
Section 1.2 is available as the library PRMGPS. Another example is TWOGPS, a library
consisting of the groups of order dividing 128, their automorphism groups, and some
procedures for manipulating these groups (see Newman and O’Brien (1989)). The releases
of CAYLEY following Version 3.8-531 will contain a library that provides access to the
primitive soluble permutation groups of degree less than 256. This library is described in
Section 10.2. At a later stage the list of groups may also be released as part of the group
theory computer system GAP, which is described in Nickel, Niemeyer and Schonert (1988).
The final chapter concludes with a note on work in progress on the irreducible soluble
subgroups of GL(8,2) (that is, the primitive soluble permutation groups of degree 256).

Appendix A presents a history of the determination of permutation groups and linear
groups. Appendix B contains some auxiliary results necessary for the work on GL(4,IF)

in Chapter 8. Appendix C contains some program listings.

1.4 Conventions and Notation

Throughout these notes all actions are on the right unless specified otherwise. Conse-
quently, if g and h are elements of a group, we define the conjugate g" of g by k to be
h=1gh.

If G, N and H are groups and G has a normal subgroup Ny isomorphic to NV such that
G/Ny is isomorphic to H, then we write G = N @ H. If G has a subgroup isomorphic to
H which intersects Ny trivially, then G is a semidirect product of N and H, and we write
G=NsxH.
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If V is an n-dimensional vector space over the field IF, we use the notations GL(V') and
GL(n,IF) to denote the group of all invertible linear transformations of V, or equivalently,
the group of all n by n invertible matrices over IF. If IF is finite of order p*, we also use
the notation GL(n, p¥).

The dihedral group D, of order 2n (n > 3) is the group

(a,b | a*=1,
=071 b=1).

The generalised quaternion group Qg of order 4n (n > 2) is the group
(a,b | a*=10",
b =051, ¥ =1).
The group Qs is called the quaternion group.

The semidihedral group SDsg, of order 8n (n > 2) is the group

(a,b | a’ =1,
ba:b—1+2n’ b4n___1>_

We denote by SAsg, the group of order 8n (n > 2) given by

{a,b | a®=1,
ba=b1+2n, b4'n:1)'

We say that a group G has a central decomposition (Hy,..., H,) if
1. each H; is a normal subgroup of G|

2. G=H,---Hy;

3. for each ¢ and j, H; N H; < Z(H;)N Z(H;);

4. for each ¢ and j, H; N H; equals Z(H;) or Z(H;).

We also say that G is the central product of the H;, and write G = H; Y ... Y H,. Note
that many authors do not impose the fourth condition.

The holomorph of a group G, written Hol(G), is the semidirect product of G and its
automorphism group.

We say that a group is monolithic if it has a unique minimal normal subgroup.

If a, b and c are positive integers such that a® divides ¢ but that a**! does not divide
¢, then we say that a® sharply divides c, and write a®| c.

We also need some notation for referring to CAYLEY objects. Libraries will be denoted
by upper case, for example, PRMGPS. Built-in functions will be denoted by a sans serif

font, for example, lattice. Procedures will be denoted by an upper-case typewriter font, for
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example, GETIRR. Names of algebraic objects, such as sets, will be printed in a lower-case
typewriter font, for example, irred.
An index of notation is included at the beginning of the index. Most notation is

standard, and can be found, for example, in Robinson (1982).

1.5 Polycyclic presentations for finite soluble groups

A convenient way of describing finite soluble groups is to use polycyclic presentations,
introduced by Jirgensen (1970) who used the term AG-system to describe them.
A polycyclic presentation for a group G is a presentation {X,R}, where X =

{a1,az,...,a,} say, and where the relations in R are of the following two kinds:

i = Mopma™ 1<i<n
arteja; = [Theiv az(i’j'k) 1<i<j<n.

In these relations each r(7) is a positive integer and each a(z,j,k) (: < j) is an integer
modulo r(k). The set X is sometimes called a polycyclic generating sequence for G. If
some of the r(z) and «(i,j, k) are not assigned specific numeric values, but rather can
be chosen from some set, then we call {X,R} a parametrised polycyclic presentation,
although we shall usually omit the word “parametrised”. For example, {(a | a” =1) is a
parametrised polycyclic presentation for a cyclic group of order r. Thus we can describe
infinitely many groups with a single polycyclic presentation.

We call {X,R} consistent if |G| =[], r(z). If {X,R} is consistent, then every ele-

ment g of G can be written uniquely in the form

n
_ €
9= Hai. )
1=1

where 0 < ¢; < r(z) — 1. The normal form of g (with respect to X') refers to either the
word af'a3® - - - aZ" or the sequence (eq,€2,...,6y,).

Note that a finite group has a polycyclic presentation if and only if it is soluble, and
that every finite soluble group has a consistent polycyclic presentation. Unfortunately,
however, not all polycyclic presentations are consistent. All soluble groups discussed in

detail in these notes will be described using consistent polycyclic presentations.
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