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PREFACE

ICALP 92 is the 19th International Colloquium on Automata, Languages, and Pro-
gramming in a series of meetings sponsored by the Eurépean Assoc1a.tlop or
ical Computer Science (EATCS). It is a broadly based conference covering all aspects
of Theoretical Computer Science including topics like: computability, automata,
formal languages, term rewriting, analysis of algorithms, computational geometry,
computational complexity, symbolic and algebraic computation, cryptography, data
types and data structures, theory of data bases and knowledge bases, semantics
of programming languages, program specification, transformation and verification,
foundations of logic programming, theory of logical design and layout, parallel and
distributed computation, theory of concurrency, theory of robotics.

ICALP 92 was held at Technische Universitat Wien from July 13 to July 17, 1992.
The Organizing Committee consisted of G. Baron, P. Kirschenhofer, W. Kuich
(Chairman), H. Maurer, H. Prodinger, F. Urbanek.

Previous ICALPs were held in Madrid (1991), Warwick (1990), Stresa (1989), Tam-
pere (1988), Karlsruhe (1987), Rennes (1986), Nafplion (1985), Antwerp (1984),
Barcelona (1983), Aarhus (1982), Haifa (1981), Amsterdam (1980), Graz (1979),
Udine (1978), Turku (1977), Edinburgh (1976), Saarbriicken (1974), Paris (1972).
ICALP 93 will be held in Lund, Sweden, from July 5 to July 9, 1993.

The Programme Committee of ICALP 92 consisted of G. Ausiello, J. Berstel,
R. V. Book, B. Buchberger, R. Cori, R. De Nicola, H. Edelsbrunner, S. Even,
Ph. Flajolet, D. Harel, M. C. B. Hennessy, N. D. Jones, J. W. Klop, D. C. Kozen,
W. Kuich (Chairman), B. Monien, E.-R. Olderog, B. Rovan, A. Salomaa, S. Skyum,
A. Tarlecki. It has selected 52 papers from 190 papers submitted in response to
the call for papers. These papers came from the following countries: Australia,
Austria, Belgium, Canada, China, CSFR, Denmark, Finland, France, FRG, Greece,
Hungary, India, Israel, Italy, Japan, Latvia, Lithuania, Netherlands, Poland, Russia,
Singapore, Spain, Sweden, Switzerland, Taiwan, UK, Ukraine, USA. Each submitted
paper has been evaluated by at least four members of the Programme Committee.
The final selection was made during the selection meeting on February 1-2, 1992 in
Wien, in which all Programme Committee members except S. Even and D. Harel
could participate. Together with six invited presentations all 52 selected papers are
contained in this volume. It is a pleasure for the conference chairman to thank the
members of the Programme Committee for their evaluation of the papers, and the
many referees who assisted in this process. The list of referees given in this volume

is as complete as we could achieve, and we apologize for any possible omissions or
€rrors.

The papers in this volume are printed in the order of presentation at ICALP 92 and
thus grouped into sessions, most of which are thematic.

Wien, April 1992 Werner Kuich
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Philosophical Issues in Kolmogorov Complexity

Ming Li* Paul M.B. Vitanyit
University of Waterloo CWI and University of Amsterdam

1 Introduction

Five years have passed since we wrote our first survey on Kolmogorov complexity
and its applications [10]. This essay is not meant to be an exhaustive survey of the
subject, not even of the recent results; that is done thoroughly in our forthcoming
book [13] which will appear very soon. Here, we would like to convey to our reader
some appealing philosophical ideas by just picking up some pretty shells deposited
on the shore by the sea of applications of Kolmogorov complexity. We hope these
ideas will be useful or, at least, enjoyable to our reader.

We give preference to ideas and applications that were not (well) covered by
our previous articles [10, 11], either due to our ignorance at the time or because
the results are new. We also prefer those results that have deeper philosophical or
methodological implications. During our narrative, we often venture into strange
lands where we are only amateurs or even total strangers. Thus our views might not
be completely conventional, but we do hope they are novel and interesting.

Due to space limitation, we refer the reader to [11, 13] for definitions and basic
facts of Kolmogorov complexity. For the purpose of reading this article at a concep-
tual level, it is sufficient to know that Kolmogorov complexity of a finite string
is simply the length of the shortest program, say in FORTRAN! encoded in binary
bits, which prints ¢ without any input. C(z) is the Kolmogorov complexity of x;
K(z) is the prefix Kolmogorov complexity of z where the program for ¢ must be
self-delimiting.

2 Should we prefer elementary proofs?

Probabilistic or information—theoretic style proofs have enjoyed major successes in
combinatorics and computer science. Qur thinking about proofs in computer science
parallels the following comments of Kolmogorov [8] about information theory:

The real substance of the entropy formula [based on probabilistic assump-
tions about independent random variables] ... holds under incomparably weaker

*Supported by NSERC operating grant OGP-046506. Computer Science Department, Univer-
sity of Waterloo, Waterloo, Ontario, N2L 3G1, Canada. E-mail: mli@math.uwaterloo.ca

tPartially supported by NSERC International Scientific Exchange Award ISE0125663. CWI,
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands. E-mail: paulv@cwi.nl

10r in Turing machine codes.



and purely combinatorial assumptions... Information theory must precede
probability theory, and not be based on it. By the very essence of this disci-
pline, the foundations of information theory must have a finite combinatorial
character.

From a practical viewpoint the real issue is whether elementary arguments must
always be more tedious. We demonstrate through one example that elementary
proofs (using Kolmogorov complexity) are not only more intuitive, but also easier.
Kolmogorov complexity based arguments, although nonconstructive, are essentially
combinatorial in nature without probabilistic assumptions. We use d(S) to denote
the number of elements in set S.

A family D = {Ds, Dy, ..., Dj} of subsets of N = {1,2,...,n} is called a distin-
guishing family for N if for any two distinct subsets M and M’ of N there exists an
i (1 <4 < j) such that d(D; N M) is different from d(D; N M'). Let f(n) denote the
minimum of d(D) over all distinguishing families for N. The coin-weighing problem
is to determine f(n). It is known that

f(n) < (2n/logn)[1 + O(loglog n/logn)]. (1)

Equation 1 was independently established by B. Lindstrém in 1965 and D.G. Can-
tor and W.H. Mills in 1966. P. Erdés and A. Rényi [5], L. Moser [15], and N.
Pippenger [16] have established the following Theorem 1 using various probabilistic
and information theory methods (second moment method).

Fix an encoding of the 2" subsets of N such that each subset is encoded by a
binary string of length n. Simplifying notation, we write M as the encoding of M.

Theorem 1 f(n) > (2n/logn)[1+ O(loglogn/logn)].
ProoF. Choose M such that C(M|Ds,..., Dj) > n. Let d; = d(D;) and m; =

d(D; N M). By elementary estimates [13], m; is within range d;/2 + O(/d;logd;).
Thus, for 1 < i < j, m; can be described using its discrepancy with d;/2, hence

1 1
C(m;|D;) < 3 logd; + O(loglogd;) < 3 logn + O(loglogn).
Since D is a distinguishing family, given D, the values my, ..., m; determine M:
T
n < C(M|Dy, ..., D;) < C(mq,...,m;j|Dy,...D;) < Ele(i logn + O(loglogn)).

This implies the theorem. O

3 The Grue Emerald Paradox

For about two thousand years philosophers have worried about the problem of in-
ductive reasoning. On the one hand, it seems common sense to assume that people
learn in the sense that they generalize from observations by learning a ‘Law’ that
governs not only the past observations, but will also apply to the observations in
the future. In this sense induction should ‘add knowledge’.



Yet how is it possible to acquire knowledge which is not yet present? If we have
a system to deduce a general law from observations, then this law is only part of the
knowledge contained in this system and the observations. Then, the law does not
represent knowledge over and above what was already present, but it represents in
fact only a part of that knowledge.

In 7], N. Goodman described the grue emerald paradoz. Let h be the hypothesis
that all emeralds are green. Let k be the hypothesis that all emeralds examined
before the the year of 2000 are green and all emeralds examined after 2000 will be
blue. Goodman called this color ‘grue’. Then both hypotheses are totally confirmed
by the experiments so far. How do we develop some tools, or philosophy, to prefer h
than k7 People have been resorting to farfetched arguments, for example, to prefer
time-independent hypothesis (k) than the time-dependent hypothesis (k).

Francis Bacon, in Sylva Sylvarum 337, 1627, formulates the power of induction
as follows: “The eye of the understanding is like the eye of the sense; for as you may
see great objects through small crannies or levels, so you may see great axioms of
nature through small and contemptible instances.”

Mathematics has come up with an induction principle which has an impecca-
ble derivation, yet allows us to estimate the relative likelihood of different possible
hypotheses—which is impossible with the commonly used Pearson-Neyman testing.
Consider a discrete sample space Q. Let D, Hy, H,, ... be a countable set of events
(subsets) of Q. H = {Hy, Hj,...} is called hypotheses space . The hypotheses H;
are exhaustive (at least one is true). From the definition of conditional probability,
that is, P(A|B) = P(AN B)/P(B), it is easy to derive Bayes’ formula (rewrite
P(AN B) in two different ways):

P(D|H;)P(H;)
PUH;| D) =" 0 T elan { Xy,
If the hypotheses are mutually exclusive (H; N H; = @ for all i, j), then

P(D) = ZP(DIH;)P(H,-).

Despite the fact that Bayes’ rule is just a rewriting of the definition of conditional
probability and nothing more, it is its interpretation and applications that are most
profound and caused much bitter controversy during the past two centuries. In
Equation 2, the H;’s represent the possible alternative hypotheses concerning the
phenomenon we wish to discover. The term D represents the empirically or otherwise
known data concerning this phenomenon. The term P(D), the probability of data
D, may be considered as a normalizing factor so that > P(H;|D) = 1. The term
P(Hj;) is called the a priori probability or initial probability of hypothesis H;, that
is, it is the probability of H; being true before we see any data. The term P(H;|D)
is called a posteriori or inferred probability

The most interesting term is the prior probability P(H;). In the context of
machine learning, P(H;) is often considered as the learner’s initial degree of belief in
hypothesis H;. In essence Bayes’ rule is a mapping from a priori probability P(H;)
to a posteriori probability P(H;|D) determined by data D. In general, the problem
is not so much that in the limit the inferred hypothesis would not concentrate on



the true hypothesis, but that the inferred probability gives as much information
as possible about the possible hypotheses from only a limited number of data. In
fact, the continuous bitter debate between the Bayesian and non-Bayesian opinions
centered on the prior probability. The controversy is caused by the fact that Bayesian
theory does not say how to initially derive the prior probabilities for the hypotheses.
Rather, Bayes’ rule only tells how they are to be updated. In the real world problems,
the prior proabilities may be unknown, uncomputable, or even conceivably non-
existent. (What is the prior probability of use of a word in written English? There
are many different sources of different social backgrounds living in different ages.)
This problem would be solved if we can find a single probability distribution to use
as the prior distribution in each different case, with approximately the same result
as if we had used the real distribution. Surprisingly, this turns out to be possible up
to some mild restrictions.

Consider theory formation in science as the process of obtaining a compact de-
scription of the past observations. The investigator observes increasingly larger ini-
tial segments of an infinite binary sequence X as the outcome of an infinite sequence
of experiments on some aspect of nature. To describe the underlying regularity of X,
the investigator tries to formulate a theory that governs X, consistent with past ex-
periments. Candidate theories (hypotheses) are identified with computer programs
that compute binary sequences starting with the observed initial segment.

First assume the existence of a prior probability distribution p (actually a mea-
sure) over the continuous sample space = {0,1}*°. Denote by u(z) the probability
of a sequence starting with . Given a previously observed data string S, the infer-
ence problem is to predict the next symbol in the output sequence, that is, extrapo-
lating the sequence S. In terms of the variables in Equation 2, H, is the hypothesis
that the sequence under consideration continues with a. Data Dgs consists of the
fact that the the sequence starts with initial segment S. Thus, for P(H;) and P(D)
in Formula 2 we substitute u(H,) and pu(Ds), respectively, and obtain:

p(Ds|H)u(Ho)

H,|Ds) =
#(Ha)Be) w(Ds)
We must have u(Ds|H,) = 1 for any a, hence,
#(Ha)
A BT e 3

Generally, we denote p(H,|Ds) by p(a|S). In terms of inductive inference or
machine learning, the final probability x(a|S) is the probability of the next sym-
bol being a, given the initial sequence S. Obviously we now only need the prior
probability p to evaluate u(alS).

The idea is to approximate the unknown proper prior probability u. Without
too much loss of generality we may as well assume that the measure u is enumerable.
That means, there is a Turing machine T' which computes a total function ¢(z, k)
such that ¢(z,k + 1) > ¢(z, k) and limg_, o ¢(z, k) = p(z). If p is recursive then it
is also enumerable, but not necessarily the converse. It turns out that the class of
all enumerable measures contains a universal measure, denoted by M, such that for
all p in this class there exists a constant ¢ > 0 such that M(z) > cu(z) for all z. We



say that M dominates u. We also call M the a priori probability, since it assigns
maximal probability to all hypotheses in absence of any knowledge about them.

Now instead of using Formula 3, we estimate the conditional probability p(ylz)
that the next segment after z is y by the expression

M(zy)

Now let g in Formula 3 be an arbitrary computable measure. This case includes
all computable sequences. If the length of y is fixed, and the length of = grows to
infinity, then it can be shown [18] that

M(y)/M(z) _
r(y)/p(z) :

with u-probability one. In other words, the conditional a priori probability is almost
always asymptotically equal to the conditional probability. It has also shown by
Solomonoff that the convergence is very fast and if we use Formula 4 instead of the
real value Formula 3, then our inference is almost as good. We also know that

—log M(z) = K(z) + O(log K (2)), (5)

That means that M assigns high probability to simple objects and low probability
to complex or random objects. We now come to the punch line: Bayes’ rule using
the universal prior distribution yields Occam’s Razor principle. Namely, if several
programs could generate S0 then the shortest one is used (for the prior probability),
and further if SO has a shorter program than S1 then S0 is preferred (that is,
predict 0 with higher probability than predicting 1 after seeing S). Bayes’ rule via
the universal prior distribution also gives the so-called indifference principle in case
S0 and S1 have roughly equal length shortest programs which ‘explain’ S0 and S1,
respectively. The Goodman’s grue emerald paradox disappears under this paradigm.

Scientists formulate their theories in two steps: firstly a scientist, based on scien-
tific observations, formulate alternative hypotheses, and secondly a definite hypoth-
esis is selected. The second step is the subject of inference in statistics. Statisticians
have developed many different principles to do this, like Occam’s Razor principle, the
Maximum Likelihood principle, various ways of using Bayes’ formula with different
prior distributions. No single principle turned out to be satisfiable in all situations.
Philosophically speaking, Solomonoff’s approach presents an ideal way of solving
induction problems. However, due to the non-computability of the universal prior
function, such a theory cannot be directly used. Some approximation is needed in
the real world applications.

Now we will closely follow Solomonoff’s idea, but substitute a ‘good’ computable
approximation to M(z). This results in Rissanen’s Minimum Description Length
principle [17]. Rissanen not only gives the principle, more importantly he also gives
the detailed formulae on how to use this principle. This made it possible to use the
MDL principle. The MDL principle can be intuitively stated as follows:

Minimum Description Length Principle. The best theory to ezplain a set
of data is the one which minimizes the sum of



e the length, in bits, of the description of the theory;
o the length, in bits, of data when encoded with the help of the theory.

We now develop this MDL principle from Bayes’ rule using the universal distri-
bution M(z), assuming that P is enumerable. From the Bayes’ Formula 2, we must
choose the hypothesis H such that P(H|D) is maximized. First we take the negative
logarithm on both sides of Equation 2, we get

—log P(H|D) = —log P(D|H) — log P(H) + log P(D)

log P(D) is a constant and hence ignored. Maximizing the P(H|D) over all possible
H’s is equivalent to minimizing —log P(H|D), or minimizing

—log P(D|H) —log P(H)

Now to get the minimum description length principle, we only need to explain above
two terms in the sum properly. According to Solomonoff, when P is enumerable,
then we approximate P by M. The prior probability P(H) is set to M(H) =
2-K(H)£O(log K(H)) where K (H) is the prefix-complexity of H. That is, —log P(H)
is about the length of a minimum prefiz code, or program, of hypothesis H.

A similar argument applies to term —log P(D|H). That is, 2~ K(P|H)£0(log K (D|H))
is a reasonable approximation of P(D|H). The term —log P(D|H), also known as
the self-information in information theory and the negative log likelihood in statis-
tics, can now be regarded as the number of bits it takes to redescribe or encode D
with an ideal code relative to H. In different applications, the hypothesis H can
mean many different things, such as decision trees, finite automata, Boolean for-
mulae, or a polynomial. In general statistical applications, one assumes that H is
some model H(f) with a set of parameters 6 = {6;,...,6;} of precision ¢, where
the number k may vary and influence the descriptional complexity of H (8). In such
case, we minimize

—log P(D|6) — log P(6).

Let’s consider one example. For each fixed k, k = 0,...,n — 1, let fi be the best
polynomial of degree k, fitted on points (z;,%) (1 < i < n), which minimizes the
error

error(fi) = Z(fk(icz) - %)

Assume each coefficient takes c bits. So fi is encoded in ck bits. Let us assume the
commonly used Gaussian distribution of the error on ’s. Thus, given that f; is the
true polynomial,

Pr(y1, ..., ¥nlfi) = IL exp(—O((fx (z:) — %)?)).

The negative logarithm of above is ¢’ - error(f) for some computable ¢/. The MDL
principle tells us to choose fi, k € {0,...,n—1}, which minimizes ck+¢'- error(fx).

4 Valiant learning under computable distributions?

Valiant’s model [20] provides an excellent framework for studying learnability. Sub-
sequent investigations show many problems intractable (NP-complete) under the



original model. Can we adapt the it to obtain a model where more concepts are
polynomial time learnable? The philosophy here is that maybe humans just learn a
concept under some restricted class of distributions, like computable ones (those in
our textbooks). Kolmogorov complexity and the Solomonoff-Levin universal distri-
bution allows us to systematically develop a theory of Valiant-style learning under
all (semi) computable distributions.

All distributions we have a name for: the uniform distribution, normal distribu-
tion, geometric distribution, Poisson distribution, are computable (with computable
parameters). Hence the change from distribution-free learning to computable-distribution-
free learning is not too restrictive. It turns out that there is a nice mathematical
structure in our computable-distribution-free learning case. For example, we can
prove completeness results in the sense that there is a single (universal) distribution
m such that if a concept class is learnable under this single distribution, they it is
learnable under all computable distributions. Formally,

Theorem 2 A concept class C is polynomially learnable under the universal distri-
bution m(z), iff it is polynomially learnable under each computable distribution P,
provided the sample is drawn according to m.

See [12] for details. In the continuous case, we even have a stronger theorem
without needing to sample according to the universal distributions.

Theorem 8 A concept class C over a continuous sample space is learnable under
M iff it is learnable under each computable measure.

5 Can we abandon pumping lemmas?

In the current undergraduate formal language courses, it seems that the cumbersome
pumping lemmas constitute an important part of the teaching. It may be argued that
such lemmas not only obstructs students’ ability of viewing the real substance of the
proof, but also give them a bad habit (like what ‘goto’ did to FORTRAN). Further,
the usual pumping lemmas do not hold conversely which adds more confusion. Often
students need un-aesthetic add-ons like “marked pumping lemma”.

It turns out that Kolmogorov complexity is just the right tool to characterize
all regular languages. It simply makes our intuition of ‘finite state’-ness of these
languages rigorous and easy to apply.

Theorem 4 (Regular KC-Characterization) Let L C I*, x = x1X2... be the
characteristic sequence of Ly, = {y|zy € L}. The following statements are equivalent.
(i) L is regular.

(%) 3cr, Vo € T*, Vn, C(x1:n|n) < cr, ¢, depending only on L.

(#3) 3cp, Ve € B*, Vn, C(x1:m) < C(n) + cr, cr depending only on L.

(iv) 3cr, Yz € T*, VYn, C(x1:n) < logn + ¢, cr depending only on L.

ProoOF. (i) — (ii) — (iii) — (iv) are simple. To show (iv) — (i), we need,

Claim 5 For each constant c there are only finitely many one-way infinite binary
strings w such that, for all n, C(w1.n) < logn + c.



