Al
IN PRACTICE

o=
]

Allan Ramsay
Rosalind Barrett




TP1§ 8860936

R178 7 ﬂ h% Al IN PRACTICE:
: A Examples in POP-11
Al in ‘practice: examples in

- pop-ti




ELLIS HORWOOD BOOKS IN COMPUTING SCIENCE

General Editors: Professor JOHN CAMPBELL, University College London, and
BRIAN L. MEEK, King's College London (KQC), University of London

Series in Artificial Intelligence

Series Editor: Professor JOHN CAMPBELL, Department of Computer Science,
University College London

Abramsky, S. & Hankin, C. (editors) Abstract Interpretation of Declarative Languages*
Boguraev, B.K. Natural Language Interfaces to Computational Systems*
Bramer, M.A. (editor) Computer Game Playing: Theory and Practice
Briscoe, E.J. Computational Speech Processing: Syntax and Prosody*
Campbell, J.A. (editor) Implementations of PROLOG
Campbell, J.A., Forsyth, R., Narayanan, A. & Teague, M. Dictionary of Artificial Intelligence*
Davies, R. (editor) Intelligent Information Systems: Progress and Prospects
Elcock, E.W. & Michie, D. (editors) Machine Intelligence 8: Machine Representations of Knowledge
Evans, J.B. Discrete System Simulation*
Forsyth, R. & Rada, R. Machine Learning: Applications in Expert Systems and Information Retrieval
Gabbay, D.M. Programming in Pure Logic*
Gergely T. & Futo, |. Artificial Intelligence in Simulation*
Glicksman, J. Image Understanding and Machine Vision*
Gottinger, H.W. Artificial Intelligence: The Commercialisation of Intelligent Systems*
Hawley, R. (editor) Artificial Intelligence Programming Environments*

Hayes, J.E., Michie, D. & Mikulich, L.. (editors)
Machine Intelligence 9: Machine Expertise and the Human Interface
Hayes, J.E., Michie, D. & Pao, Y.-H. (editors)
Machine Intelligence 10: Intelligent Systems: Practice and Perspective

Hayes, J.E. & Michie, D. (editors) Intelligent Systems: The Unprecedented Opportunity
Hunter, J.R.W., Gotts, N.M. & Sinnhuber, R.K.E.W. Artificial Intelligence in Medicine*
Lukaszewicz, W. Nonmonotonic Reasoning*
Mellish, C. Computer Interpretation of Natural Language Descriptions
Michie, D. On Machine Intelligence, Second Edition
Partridge, D. Artificial Intelligence: Applications in the Future of Software Engineering
Ramsay, A. & Barrett, R. Al in Practice: Examples in POP-11
Slatter, P.E. Cognitive Emulation in Expert Systems*
Savory, S.E. Artificial Intelligence and Expert Systems*
Spacek, L. Advanced Programming in PROLOG*
Sparck Jones, K. & Wilks, Y. (editors) Automatic Natural Language Parsing
Steels, L. & Campbell, J.A. (editors) Progress in Artificial Intelligence
Torrance, S. (editor) The Mind and the Machine
Turner, R. Logics for Artificial Intelligence
Wallace, M. Communicating with Databases in Natural Language
Waterworth, J.A. Speech and Language-based Communication with Machines*
Wertz, H. Automatic Correction and Improvement of Programs
Yazdani, M. (editor) New Horizons in Educational Computing
Yazdani, M. & Narayanan, A. (editors) Artificial Intelligence: Human Effects

* In preparation



/8

- A

N
X

8860938

Al IN PRACTICE:
Examples in POP-11

ALLAN RAMSAY, B.sc., M.Sc., Ph.D.

Lecturer in Artificial Intelligence

Cognitive Studies Programme, University of Sussex
and

ROSALIND BARRETT, B.A.
Technical Author
Cognitive Studies Programme, University of Sussex

i

N

E8860936

il

ELLIS HORWOOD LIMITED

Publishers - Chichester

Halsted Press: a division of
JOHN WILEY & SONS

New York - Chichester - Brisbane - Toronto



First published in 1987 by

ELLIS HORWOOD LIMITED

Market Cross House, Cooper Street,
Chichester, West Sussex, PO19 1EB, England

The publisher’s colophon is reproduced from James Gillison’s drawing of the ancient
Market Cross, Chichester.

Distributors:

Australia and New Zealand:
JACARANDA WILEY LIMITED
GPO Box 859, Brisbane, Queensland 4001, Australia

Canada:
JOHN WILEY & SONS CANADA LIMITED
22 Worcester Road, Rexdale, Ontario, Canada

Europe and Africa:
JOHN WILEY & SONS LIMITED
Baffins Lane, Chichester, West Sussex, England

North and South America and the rest of the world:
Halsted Press: a division of

JOHN WILEY & SONS

605 Third Avenue, New York, NY 10158, USA

© 1987 A. Ramsay and R. Barrett/Ellis Horwood Limited

British Library Cataloguing in Publication Data

Ramsay, Allan, 7953-Al in practice: examples in POP-11. —

(Ellis Horwood books in computing science: series in artificial intelligence)
1. Artificial intelligence — Data processing

2. POP-11 (Computer program language)

I. Title II. Barrett, Rosalind

006.3'028'55133 Q336

Library of Congress CIP Data also available

ISBN 0-7458-0063-7 (Ellis Horwood Limited — Library Edn.)
ISBN 0-7458-0167-6 (Ellis Horwood Limited — Student Edn.)
ISBN 0-470-20770-1 (Halsted Press)

Printed in Great Britain by R.J. Acford, Chichester

COPYRIGHT NOTICE

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photo-
copying, recording or otherwise, without the permission of Ellis Horwood Limited,
Market Cross House, Cooper Street, Chichester, West Sussex, England.



CONTENTS

Preface

1 PLANNING ~"

1.1 Introduction
1.2 Representing Actions
1.3 Outline of the Planning Algorithm
1.4 The Planner

1.4.1 Reading in Schemas

1.4.2 Matching Algorithms

1.4.3 The Means End Planner

1.4.4 High Level Control of the Planning Process
1.5 Schema Definitions for the Example
1.6 Reflections

2 THEOREM PROVING
2.1 Introduction
2.1.1 Predicate Calculus and Theorem Proving
2.2 Overview of the Program
2.2.1 Matching
2.2.2 Backtracking
2.3 The Theorem Prover
2.3.1 The Matching Algorithm
2.3.2 Procedures for Reading in Rules
2.3.3 Running Rules

13
13
16
18
21
22
26
34
45
49
51

53
53
53
57
58
59
62
62
65
75



2.4 Examples

2.4.1 A Simple Rule Set

2.4.2 Rules about Knowledge and Action
2.5 Reflections

3 EXPERT SYSTEM SHELLS
3.1 Introduction
3.2 Overview of EMYCIN
3.2.1 Production Rules
3.2.2 Storing Hypotheses
3.2.3 Limitations
3.2.4 Running EMYCIN
3.3 EMYCIN
3.4 Example
3.5 Summary
3.6 A PROSPECTOR-type Expert System
3.6.1 Sample Run of EPROSPECTOR
3.7 Providing Rules
3.8 Compiling Rules
3.9 Performing Inferences
3.10 EPROSPECTOR
3.10.1 Setting up the Graph
3.11 Using the Graph for Inference
3.12 Reflections

4 VISION
4.1 Introduction
4.2 Drawing Pictures with the Turtle
4.2.1 The Turtle Picture-drawing Package
4.3 Low-level Image Processing
4.3.1 Procedures for Edge Detection
4.4 Lines from Edge Discontinuities
4.4.1 The Line-finding Algorithm
4.4.2 Procedures for Finding Lines
4.5 Classifying Junctions and Regions
4.5.1 Recognising Junctions
4.5.2 Procedures for Recognising Junctions
4.5.3 Finding Regions
4.5.4 Procedures for Region Finding
4.6 Reflections

5 NATURAL LANGUAGE
5.1 Introduction
5.2 Processing Feature Trees
5.2.1 Reading in Feature Trees

82
82
86
96

99

99
100
100
103
103
103
104
110
112

113
115
117
121
122
122
127
143

145
145
146
147
167
169
178
178
180
190
190
191
197
200
206

208
208
210
213



5.2.2 Printing out Feature Trees
5.2.3 Matching Feature Trees
5.3 Reading in the Dictionary
5.4 Reading in Rules
5.4.1 Lexical Rules
5.4.2 Syntactic Rules
5.5 Morphological Processing
5.6 Lexical Processing
5.7 Parsing the Lexically Analysed String
5.8 Semantic Analysis
5.8.1 Reading in Semantic Rules
5.8.2 The Semantic Rules
5.9 Reflections

APPENDIX 1: THE VIRTUAL MACHINE
APPENDIX 2: SUMMARY OF STANDARD PROCEDURES
APPENDIX 3: POP-11 SUPPLIERS

REFERENCES
PROGRAM INDEX
GENERAL INDEX

216
219
225
230
232
242
248
252
256
269
270
277
288

292
208
306

308
309
313



",

“E




PREFACE

Introduction
This book is intended for people who have a theoretical
understanding of Artificial Intelligence (AI), but who have little
experience of the problems that arise in the practical application
of this understanding. The book contains comprehensive
illustration of programs demonstrating advanced Al techniques.
By complementing the theory with clearly commented programs,
we hope to help our readers gain a much deeper understanding
of some of the major techniques in current use in AL

The programs in this book demonstrate state-of-the-art
techniques. We have tried to steer a course between toy
programs, from which the reader would learn little, and
experimental programs which have not been thoroughly tested.
The more advanced concepts which we make use of include
such things as non-linear, hierarchical planning, theorem proving
for modal logic, rule compilation for expert systems, line
finding based on local computation, and chart parsing for
functional unification grammar. These are all ideas which are
well known in the AI literature, but for which concrete
implementations are seldom presented.

The programs are written in the high-level programming
language POP-11. POP-11 is the core language of the POPLOG



10 PREFACE

system - an integrated, interactive software development
environment containing incremental compilers for POP-11, LISP
and PROLOG, all written entirely in POP-11. It was, however,
originally developed as a language for Al applications. We
hope that this book will show how well suited it is to its
original function, as well to the sort of systems work that has
been done in it for POPLOG.

The book, POP-11: A Practical Language for Artificial
Intelligence, (Barrett, Ramsay and Sloman, 1985) is the text
teaching the language. Readers with access to POP-11 who are
familiar with all the facilities presented there are encouraged
first to use the programs developed in this book, and later to
modify them and develop their own programs in order to
explore more areas in AL Any POP-11 procedures not covered
in the teaching text are described in an appendix at the end of
this book.

Readers unfamiliar with POP-11 itself, but literate in other
high-level programming languages, such as LISP, PROLOG, C
and PASCAL, will easily be able to follow the examples but
will not be able to develop them.

The structure of the book

The book is divided into five self-contained chapters
representing major areas in AL They are Planning, Theorem
Proving, Expert System Shells, Vision and Natural Language.
Their order in the book is of no significance, and nothing in
any one chapter depends on anything in another. Readers need
only use chapters which are of interest to them. The appendices
at the back of the book reference all the POP-11 procedures
used, describe any POP-11 facilities not covered by Barrett,
Ramsay and Sloman (1985), and provide useful addresses for
finding out more about POP-11.

Accessing POP-11

POP-11 is currently only available as part of POPLOG. It is
designed to be portable and runs on VAX computers under
VMS, Berkeley UNIX and Ultrix operating systems, GEC Series
63 computers under AT&T UNIX System V, M68000 computers
under Unisoft UNIX, SUN.2 and SUN.3 under Berkeley UNIX,
and Hewlett Packard M68000 workstations also running
Berkeley UNIX. POP-11 can be used with an ordinary VDU
with screen editing capabilities, and can also be linked to a
window/mouse mechanism on the SUN workstation and other
workstations with such devices. POPLOG is marketed



PREFACE 11

commercially by Systems Designers.

Towards the end of 1986 Cognitive Applications will release
POP-11 on the Apple Macintosh. During 1987 it will be ported
onto the IBM-PC and other popular micro-computers.

Acknowledgements

The programs in this book are based on programs developed by
colleagues in the Cognitive Studies Program and the
Experimental Psychology Laboratory at the University of
Sussex. They have undergone many modifications since we
selected them from the many programs that were available to
us, and any bugs they contain now are our responsibility
rather than their original authors’. Many people have
contributed to the development of these programs over the past
few years, and in some cases the history of authorship is not
entirely clear. We do know that the following people made
substantial contributions, and we would like to thank them for
allowing us to use their work: Steve Hardy, Aaron Sloman and
David Hogg for parts of the chapter on vision; Steven Isard,
Roger Evans and Chris Mellish for parts of the chapter on
language processing; Chris Mellish for most of the code for the
expert system shells; Steve Hardy for the basis of the planner;
and John Gibson for much of the description of the virtual
machine.



1. R B I Ige ;=1 .
& o g . - S . o
. | - . o TR .

- = =L ... . N T S

e : o =m k-
- e e . - 2 a=n
L o = PR
[ .. fae e I
S . - et - "1 9 - fip =
- K o ' ot e ey o .
" = [ " i . o =3 .

i
f . . B B . .1 ¢
.
o= T S e - L
.
.
. P = B r . i
i i i =T
[ ! i o e an
- 5 o
. . D e e . . . -r
- . s
. -
. s .
- . -
.
. N .
.
.
.
-
= B £
. ,
.
i . . B
.
B o~
. B
B -
-
- -
B .
.
.
.
B
. .




PLANNING

1.1 INTRODUCTION

This chapter develops a non-linear, hierarchical planner. For
illustration we use the planner in the ‘blocks world’, the
traditional toy domain for AI programs, but the planner is not
restricted to this world. It will work for any domain where
actions can be described in terms of discrete lists of
preconditions (facts which must be true for the action to be
performed) and effects (facts which will be true after the
action has been performed).

Our planner describes actions in terms of preconditions and
effects. It is given a list of facts which are currently true and
a list of goals which we would like to be true, and attempts
to produce a sequence of actions which will bring about the
list of goals. It uses a combination of backward chaining, as in
the original STRIPS planner (Fikes and Nilsson 1971) and
heuristic search. The backward chaining is used for providing
plans for each of the individual top level goals. The heuristic
search, which is reminiscent of the strategy used by NOAH
(Sacerdoti 1977), is used for working out what order to tackle
the main goals in. Before we go on to consider the mechanisms
behind the planner in detail we will look at an example of the



14 PLANNING [Ch. 1

sort of plan it generates.

The blocks world consists of a number of blocks, a table,
and a robot hand. The blocks are either on the table, on each
other, or held by the hand somewhere above the table or a
pile of blocks. At most one block can be on any other, though
any number may form a stack, and at most one block can be
held in the hand at any one time. The table is divided into
places filled by a block, and spaces. The goal of the system is
to find a plan to arrange the blocks into positions which you
specify. You can grasp and ungrasp blocks, and move, raise or
lower either an empty hand or a hand holding a block. You
can only grasp blocks which have clear tops. The state of the
world is represented by a list of facts. We use the following
state of affairs for illustrative purposes:

[[object table] [object b1] [object b2]
[object b3] [object b4]

[block b1] [block b2] [block b3] [block b4]
[on b1 table] [position b1 [1 1]]

[on b2 b1] [position b2 [1 1]]

[holding b3] [position b3 [1 1]]

[position hand [1 1]]

[position space [20 20]]

[position space [30 30]]

[on b4 table] [position b4 [10 10]]]

This can be represented pictorially as in Fig. 1.1. If we give
the planner

[[on b1 b3] [on b3 b2]]

as a list of goals, we can represent the desired state of the
world pictorially as in Fig. 1.2.



Sec. 1.1] INTRODUCTION 15

*
*

L ERE R ERE R R

@
[&]

Figure 1.2 Final blocks world



16 PLANNING [Ch. 1

The planner, called make_plan, would produce the following:

[move hand ( holding b3 ) from [1 1] to [20 20]]
[lower b3]

[ungrasp b3]

[move hand ( empty ) from [20 20] to [1 1]]
[grasp b2]

[raise b2]

[move hand ( holding b2 ) from [1 1] to [30 30]]
[lower b2]

[ungrasp b2]

[move hand ( empty ) from [30 30] to [1 1]]
[move hand ( empty ) from [1 1] to [20 20]]
[grasp b3]

[raise b3]

[move hand ( holding b3 ) from [20 20] to [30 30]]
[lower b3]

[ungrasp b3]

[move hand ( empty ) from [30 30] to [1 1]]
[grasp b1]

[raise b1]

[move hand ( holding b1 ) from [1 1] to [30 30]]
[lower b1]

This is a fairly complex plan by the standards of AI planning
systems. It contains one minor hiccough, about half-way
through, where it does two consecutive moves. This happened
because of the way that the plans for achieving the two main
goals get spliced together. Apart from this the plan is as
efficient as it could be, and was discovered in an acceptable
amount of time (just over 70 CPU seconds on a DEC VAX-
11/750).

1.2 REPRESENTING ACTIONS

We represent the operators, or the description of the actions, as
‘schemas’. The result of performing an action is to change the
state of the world as it is recorded in the database. This is
achieved by simply adding and deleting facts to and from the
database. We make a small change to the traditional
presentation of actions. Rather than having add- and delete-lists
of facts we have a single effects-list which may contain
negated facts. This makes little difference to the description of
the effects of an action, but it does enable us to be more



