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PREFACE

Introduction
This book is intended for people who have a theoretical
understanding of Artificial Intelligence (AI), but who have little
experience of the problems that arise in the practical application
of this understanding. The book contains comprehensive
illustration of programs demonstrating advanced Al techniques.
By complementing the theory with clearly commented programs,
we hope to help our readers gain a much deeper understanding
of some of the major techniques in current use in AL

The programs in this book demonstrate state-of-the-art
techniques. We have tried to steer a course between toy
programs, from which the reader would learn little, and
experimental programs which have not been thoroughly tested.
The more advanced concepts which we make use of include
such things as non-linear, hierarchical planning, theorem proving
for modal logic, rule compilation for expert systems, line
finding based on local computation, and chart parsing for
functional unification grammar. These are all ideas which are
well known in the AI literature, but for which concrete
implementations are seldom presented.

The programs are written in the high-level programming
language POP-11. POP-11 is the core language of the POPLOG
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system - an integrated, interactive software development
environment containing incremental compilers for POP-11, LISP
and PROLOG, all written entirely in POP-11. It was, however,
originally developed as a language for Al applications. We
hope that this book will show how well suited it is to its
original function, as well to the sort of systems work that has
been done in it for POPLOG.

The book, POP-11: A Practical Language for Artificial
Intelligence, (Barrett, Ramsay and Sloman, 1985) is the text
teaching the language. Readers with access to POP-11 who are
familiar with all the facilities presented there are encouraged
first to use the programs developed in this book, and later to
modify them and develop their own programs in order to
explore more areas in AL Any POP-11 procedures not covered
in the teaching text are described in an appendix at the end of
this book.

Readers unfamiliar with POP-11 itself, but literate in other
high-level programming languages, such as LISP, PROLOG, C
and PASCAL, will easily be able to follow the examples but
will not be able to develop them.

The structure of the book

The book is divided into five self-contained chapters
representing major areas in AL They are Planning, Theorem
Proving, Expert System Shells, Vision and Natural Language.
Their order in the book is of no significance, and nothing in
any one chapter depends on anything in another. Readers need
only use chapters which are of interest to them. The appendices
at the back of the book reference all the POP-11 procedures
used, describe any POP-11 facilities not covered by Barrett,
Ramsay and Sloman (1985), and provide useful addresses for
finding out more about POP-11.

Accessing POP-11

POP-11 is currently only available as part of POPLOG. It is
designed to be portable and runs on VAX computers under
VMS, Berkeley UNIX and Ultrix operating systems, GEC Series
63 computers under AT&T UNIX System V, M68000 computers
under Unisoft UNIX, SUN.2 and SUN.3 under Berkeley UNIX,
and Hewlett Packard M68000 workstations also running
Berkeley UNIX. POP-11 can be used with an ordinary VDU
with screen editing capabilities, and can also be linked to a
window/mouse mechanism on the SUN workstation and other
workstations with such devices. POPLOG is marketed
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commercially by Systems Designers.

Towards the end of 1986 Cognitive Applications will release
POP-11 on the Apple Macintosh. During 1987 it will be ported
onto the IBM-PC and other popular micro-computers.
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PLANNING

1.1 INTRODUCTION

This chapter develops a non-linear, hierarchical planner. For
illustration we use the planner in the ‘blocks world’, the
traditional toy domain for AI programs, but the planner is not
restricted to this world. It will work for any domain where
actions can be described in terms of discrete lists of
preconditions (facts which must be true for the action to be
performed) and effects (facts which will be true after the
action has been performed).

Our planner describes actions in terms of preconditions and
effects. It is given a list of facts which are currently true and
a list of goals which we would like to be true, and attempts
to produce a sequence of actions which will bring about the
list of goals. It uses a combination of backward chaining, as in
the original STRIPS planner (Fikes and Nilsson 1971) and
heuristic search. The backward chaining is used for providing
plans for each of the individual top level goals. The heuristic
search, which is reminiscent of the strategy used by NOAH
(Sacerdoti 1977), is used for working out what order to tackle
the main goals in. Before we go on to consider the mechanisms
behind the planner in detail we will look at an example of the



14 PLANNING [Ch. 1

sort of plan it generates.

The blocks world consists of a number of blocks, a table,
and a robot hand. The blocks are either on the table, on each
other, or held by the hand somewhere above the table or a
pile of blocks. At most one block can be on any other, though
any number may form a stack, and at most one block can be
held in the hand at any one time. The table is divided into
places filled by a block, and spaces. The goal of the system is
to find a plan to arrange the blocks into positions which you
specify. You can grasp and ungrasp blocks, and move, raise or
lower either an empty hand or a hand holding a block. You
can only grasp blocks which have clear tops. The state of the
world is represented by a list of facts. We use the following
state of affairs for illustrative purposes:

[[object table] [object b1] [object b2]
[object b3] [object b4]

[block b1] [block b2] [block b3] [block b4]
[on b1 table] [position b1 [1 1]]

[on b2 b1] [position b2 [1 1]]

[holding b3] [position b3 [1 1]]

[position hand [1 1]]

[position space [20 20]]

[position space [30 30]]

[on b4 table] [position b4 [10 10]]]

This can be represented pictorially as in Fig. 1.1. If we give
the planner

[[on b1 b3] [on b3 b2]]

as a list of goals, we can represent the desired state of the
world pictorially as in Fig. 1.2.
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The planner, called make_plan, would produce the following:

[move hand ( holding b3 ) from [1 1] to [20 20]]
[lower b3]

[ungrasp b3]

[move hand ( empty ) from [20 20] to [1 1]]
[grasp b2]

[raise b2]

[move hand ( holding b2 ) from [1 1] to [30 30]]
[lower b2]

[ungrasp b2]

[move hand ( empty ) from [30 30] to [1 1]]
[move hand ( empty ) from [1 1] to [20 20]]
[grasp b3]

[raise b3]

[move hand ( holding b3 ) from [20 20] to [30 30]]
[lower b3]

[ungrasp b3]

[move hand ( empty ) from [30 30] to [1 1]]
[grasp b1]

[raise b1]

[move hand ( holding b1 ) from [1 1] to [30 30]]
[lower b1]

This is a fairly complex plan by the standards of AI planning
systems. It contains one minor hiccough, about half-way
through, where it does two consecutive moves. This happened
because of the way that the plans for achieving the two main
goals get spliced together. Apart from this the plan is as
efficient as it could be, and was discovered in an acceptable
amount of time (just over 70 CPU seconds on a DEC VAX-
11/750).

1.2 REPRESENTING ACTIONS

We represent the operators, or the description of the actions, as
‘schemas’. The result of performing an action is to change the
state of the world as it is recorded in the database. This is
achieved by simply adding and deleting facts to and from the
database. We make a small change to the traditional
presentation of actions. Rather than having add- and delete-lists
of facts we have a single effects-list which may contain
negated facts. This makes little difference to the description of
the effects of an action, but it does enable us to be more



