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Preface

This textbook is a unique blend of the theory of differential equations and
their exciting application to “real world” problems. First, and foremost, it
is a rigorous study of ordinary differential equations and can be fully
understood by anyone who has completed one year of calculus. However,
in addition to the traditional applications, it also contains many exciting
“real life” problems. These applications are completely self contained.
First, the problem to be solved is outlined clearly, and oné or more
differential equations are derived as a model for this problem. These
equations are then solved, and the results are compared with real world
data. The following applications are covered in this text.

1. In Section 1.3 we prcve that the beautiful painting “Disciples at
Emmaus” which was bought by the Rembrandt Society of Belgium for
$170,000 was a modern forgery.

2. In Section 1.5 we derive differential equations which govern the
population growth of various species, and compare the results predicted by
our models with the known values of the populations.

3. In Section 1.6 we try to determine whether tightly sealed drums filled
with concentrated waste material will crack upon impact with the ocean
floor. In this section we also describe several tricks for obtaining informa-
tion about solutions of a differential equation that cannot be solved
explicitly.

4. In Section 2.7 we derive a very simple model of the blood glucose
regulatory system and obtain a fairly reliable criterion for the diagnosis of
diabetes.

5. In Section 4.3 we derive two Lanchestrian combat models, and fit one
of these models, with astonishing accuracy, to the battle of Iwo Jima-in
World War II.



Preface

This textbook also contains the following important, and often unique
features.

1. In Section 1.9 we give a complete proof of the existence-uniqueness
theorem for solutions of first-order equations. Our proof is based on the
method of Picard iterates, and can be fully understood by anyone who has
completed one year of calculus.

2. Modesty aside, Section 2.12 contains an absolutely super and unique
treatment of the Dirac delta function. We are very proud of this section
because it eliminates all the ambiguities which are inherent in the tradi-
tional exposition of this topic.

3. All the linear algebra pertinent to the study of systems of equations is
presented in Sections 3.1-3.5. One advantage of our approach is that the
reader gets a concrete feeling for the very important but extremely abstract
properties of linear independence, spanning, and dimension. Indeed, many
linear algebra students sit in on our course to find out what’s really going
on in their course. v

I greatly appreciate the help of the following people in the preparation
of this manuscript: Eleanor Addison who drew the original figures, and
Kate MacDougall, Sandra Spinacci, and Miriam Green who typed por-
tions of this manuscript.

I am grateful to Walter Kaufmann-Biihler, the mathematics editor at
Springer-Verlag, and Elizabeth Kaplan, the production editor, for their
extensive assistance and courtesy during the preparation of this
manuscript. It is a pleasure to work with these true professionals.

Finally, I am especially grateful to Joseph P. LaSalle for the encourage-
ment and help he gave me. Thanks again, Joe.

New York City <
October, 1977 Martin Braun



Chapter 1
First-order differential equations

1.1 Introduction

1.2  First-order linear differential equations

1.3 The van Meegeren art forgeries

1.4 Separable equations

1.5 Population models

1.6 An atomic waste disposal problem

1.7 The dynamics of tumor growth, mixing problems, and
orthogonal trajectories

1.8 Exact equations, and why we cannot solve very many
differential equations

1.9 The existence-uniqueness theorem; Picard iteration

1.10 Difference equations, and how to compute the interest
due on your student loans

Chapter 2
Second-order linear differential equations

2.1 Algebraic properties of solutions
2.2 Linear equations with constant coefficients
2.2.1 Complex roots
2.2.2 Equal roots; reduction of order
2.3 The nonhomogeneous equation
2.4 The method of variation of parameters
2.5 The method of judicious guessing
2.6 Mechanical vibrations
2.6.1 The Tacoma Bridge disaster
2.6.2 Electrical networks

Contents

11
20

37

42

57

il

76

76
87

100
102
106
114
122
124



Contents

2.7 A model for the detection of diabetes
2.8 Series solutions
2.8.1 Singular points; the method of Frobenius
2.9 The method of Laplace transforms
2.10 Some useful properties of Laplace transforms
2.11 Differential equations with discontinuous right-hand sides
2.12 The Dirac delta function
2.13 The convolution integral
2.14 The method of elimination for systems
2.15 A few words about higher-order equations

Chapter 3
Systems of differential equations

3.1 Algebraic properties of solutions of linear systems

3.2 Vector spaces

3.3 Dimension of a vector space

3.4 Applications of linear algebra to differential equations
3.5 The theory of determinants

3.6 The eigenvalue-eigenvector method of finding solutions
3.7 Complex roots

3.8 Equal roots

3.9 Fundamental matrix solutions; eA’

3.10 The nonhomogeneous equation; variation of parameters
3.11 Solving systems by Laplace transforms

Chapter 4
Qualitative theory of differential equations

4.1 Introduction
4.2 The phase-plane
4.3 Lanchester’s combat models and the battle of Iwo Jima

Appendix A

Some simple facts concerning functions
of several variables

Appendix B
Sequences and series

Answers to odd-numbered exercises

Index

Wit

127
134

154
163
168
173~
181
186
188

194

194
203

221
227
240
249
253
263
268
276

280

280
286
291

300

302
305
317



.

First-order differential equations

1.1 Introduction

This book is a study of differential equations and their applications. A dif-
ferential equation is a relationship between a function of time and its de-
rivatives. The equations

& ., .
e =3y*sin(t+y) (i)
and
i APy .
e N )

are both examples of differential equations. The order of a differential
equation is the order of the highest derivative of the function y that ap-
pears in the equation. Thus (i) is a first-order differential equation and (ii)
is a third-order differential equation. By a solution of a differential equa-
tion we will mean a continuous function y(7) which together with-its de-
rivatives satisfies the relationship. For example, the function
y(1)=2sint— j cos2t

is a solution of the second-order differential equation

d?y

— +y=cos2t

) dr?

since

2
%(ZSint——;-cos21)+(2sint—-%c0521)
=(—2sint+ §cos2t)+2sins— § cos 2 =cos21.

1



1 First-order differential equations

Differential equations appear naturally in many areas of science and the
humanities. In this book, we will present serious discussions of the applica-
tions of differential equations to such diverse and fascinating problems as
the detection of art forgeries, the diagnosis of diabetes, the growth of
cancerous tumor cells, the battle of Iwo Jima during World War 11, and
the growth of various populations. Our purpose is to show how researchers
have used differential equations to solve, or try to solve, real life problems.
And while we will discuss some of the great success stories of differential
equations, we will also point out their limitations and document some of
their failures.

1.2 First-order linear differential equations

We begin by studying first-order differential equations and we will assume
that our equation is, or can be put, in the form

L = f(ey). (1)

The problem before us is this: Given f(z,y) find all functions y(?) which
satisfy the differential equation (1). We approach this problem in the
following manner. A fundamental principle of mathematics is that the way
to solve a new problem is to reduce it, in some manner, to a problem that
we have already solved. In practice this usually entails successively sim-
plifying the problem until it resembles one we have already solved. Since
we are presently in the business of solving differential equations, it is advis-
able for us to take inventory and list all the differential equations we can
solve. If we assume that our mathematical background consists of Jjust ele-
mentary calculus then the very sad fact is that the only first-order differen-
tial equation we can solve at present is !

D s @

where g is any integrable function of time. To solve Equation (2) simply
integrate both sides with respect to 7, which yields

y(z)=fg(:)dz+c.

Here c is an arbitrary constant of integration, and by | g(r)dr we mean an

anti-derivative of g, that is, a function whose derivative is g. Thus, to solve
any other differential equation we must somehow reduce it to the form ).
As we will see in Section 1.8, this is impossible to do in most cases. Hence,
we will not be able, without the aid of a computer, to solve most differen-
tial equations. It stands to reason, therefore, that to find those differential
equations that we can solve, we should start with very simple equations

2



1.2 First-order linear differential equations

and not ones like

dy sin(+—37V|y| )

— =

dr

(which incidentally, cannot be solved exactly). Experience has taught us
that the “simplest” equations are those which are linear in the dependent
variable y.

Definition. The general first-order linear differential equation is

%+a(!)y=b(l). 3)

Unless otherwise stated, the functions a(r) and b(r) are assumed to be
continuous functions of time. We single out this equation and call it lin-
ear because the dependent variable y appears by itself, that is, no terms
such as e, y3 or siny etc. appear in the equation. For example dy / dr
=y?+sint and dy /dt =cosy + 1 are both nonlinear equations because of
the y2 and cosy terms respectively.

Now it is not immediately apparent how to solve Equation (3). Thus, we
simplify it even further by setting b(7)=0.

Definition. The equation

& i

2 Ha()y=0 4)
is called the homogeneous first-order linear differential equation, and

Equation (3) is called the nonhomogeneous first-order linear differential
equation for b(?) not identically zero.

Fortunately, the homogeneous equation (4) can be solved quite easily.
First, divide both sides of the equation by y and rewrite it in the form

&
dt
—=—a(1).
> (1)
Second, observe that
L4
d 4
o In|y ()|

where by In|y(#)| we mean the natural logarithm of | ¥(2)|- Hence Equation
(4) can be written in the form

L 1nly ()] = - a(y) 5)



1 First-order differential equations

But this is Equation (2) “essentially” since we can integrate both sides of
(5) to obtain that

In|y (1) = -fa(t)m+c,

where ¢, is an arbitrary constant of integration. Taking exponentials of
both sides yields

|y(f)|=°XP(—fa(t)dl+c,)=cexp(—fa(t)dt)

or

’y(t)exp(fa(l)dt) =c. (6)

Now, y(?) exp( f a(r) dt) is a continuous function of time and Equation (6)

states that its absolute value is constant. But if the absolute vaiue of a con-
tinuous function g(7) is constant then g itself must be constant. To prove
this observe that if g is not constant, then there exist two different times ¢,
and ¢, for which g(#,)=c and g(z,)= — c. By the intermediate value theo-
rem of calculus g must achieve all values between — ¢ and + ¢ which is im-

possible if | g(7)|=c. Hence, we obtain the equation y () exp( f a(t)dt)==c
or

y(t)=cexp(—fa(t)dt). @)

Equation (7) is said to be the general solution of the homogeneous equa-
tion since every solution of (4) must be of this form. Observe that an arbi-
trary constant ¢ appears in (7). This should not be too surprising. Indeed,
we will always expect an arbitrary constant to appear in the general solu-
tion of any first-order differential equation. To wit, if we are given dy / dt
and we want to recover y(r), then we must perform an integration, and
this, of necessity, yields an arbitrary constant. Observe also that Equation
(4) has infinitely many solutions; for each value of ¢ we obtain a distinct
solution y (7).

Example 1. Find the general solution of the equation (dy /dr)+ 2ty =0.
Solution. Here a(#)=2t so that y(t)= cexp( — thdt) =ce "

Example 2. Determine the behavior, as r— o0, of all solutions of the equa-
tion (dy/dt)+ ay =0, a constant.

Solution. The general solution is y(f)=c exp( ~ f a dt) =ce™ . Hence if

a <0, all solutions, with the exception of y =0, approach infinity, and if a
>0, all solutions approach zero as t—o0.

4



1.2 First-order linear differential equations

In applications, we are usually not interested in all solutions of (4).
Rather, we are looking for the specific solution y(f) which at some initial
time ¢, has the value y,. Thus, we want to determine a function y () such
that

D rayr=0.  y()=ye ®)

Equation (8) is referred to as an initial-value problem for the obvious rea-
son that of the totality of all solutions of the differential equation, we are
looking for the one solution which initially (at time ) has the value Yo To
find this solution we integrate both sides of (5) between to and ¢. Thus

t d 1
—In|y(s)|ds=— | a(s)ds
f,., Gy @lds= - ['a(s)
and, therefore

y(1)
Y (%)

Taking exponentials of both sides of this equation we obtain that

In|y (1) =In|y ()| =In

=~ [(a(s)as.

RUL L i 0

» (1) '°""( i "")
or

y(0) ‘ 2

o exp(j;oa(s)dt) =1.

The function inside the absolute value sign is a continuous function of
time. Thus, by the argument given previously, it is either identically +1 or
identically — 1. To determine which one it is, evaluate it at the point #,;
since

240 cxp(f'oa(s)ds) =1

Y(’o) 1
we see that
y(?) ( ‘ )
ex a(s)ds|=1.
)’(’o) - '/;o (
Hence

7=y exp{ = ['a(e)s) = oeno( - [‘ats)as)

o



1 First-order differential equations

Example 3. Find the solution of the initial-value problem

%+(sint)y-0, y(0)=3.

Solution. Here a(t)=sint so that

y()=43 exp( - L’sinsds) =3elcosn -1,

Example 4. Find the solution of the initial-value problem

&, .
Fr+ey 0, y(1)=2.

Solution. Here a(t)=e" so that
y(t)=2exp(—f'e"ds).
1

Now, at first glance this problem would seem to present a very serious dif-
ficulty in that we cannot integrate the function e*’ directly. However, this
solution is equally as valid and equally as useful as the solution to Example
3. The reason for this is twofold. First, there are very simple numerical
schemes to evaluate the above integral to any degree of accuracy with the
aid of a computer. Second, even though the solution to Example 3 is given
explicitly, we still cannot evaluate it at any time ¢ without the aid of a table
of trigonometric functions and some sort of calculating aid, such as a slide
rule, electronic calculator or digital computer.

We return now to the nonhomogeneous equation

% +a(t)y=b(1).

It should be clear from our analysis of the homogeneous equation that the
way to solve the nonhomogeneous equation is to express it in the form

‘% (“something”) = b (1)

and then to integrate both sides to solve for “something”. However, the ex-
pression (dy /dt)+ a(r)y does not appear to be the derivative of some sim-
ple expression. The next logical step in our analysis therefore should be the
following: Can we make the left hand side of the equation to be d/dr of
“something”? More precisely, we can multiply: both sides of (3) by any
continuous function p(¢) to obtain the equivalent equation

BOZ + a0 1)y =w(06) 9



1.2 First-order linear differential equations

(By equivalent equations we mean that every solution of (9) is a solution of
(3) and vice-versa.) Thus, can we choose p(t) so that p(r)(dy /d)+
a(t) p(1)y is the derivative of some simple expression? The answer to this
question is yes, and is obtained by observing that

d dy  dp
> p()y=p() 7+

Hence, u(t)(dy/dt)+a(t) p(8)y will be equal to the derivative of u(7)y if
and only if du()/dt= a(t) p(¢). But this is a first-order linear homoge-
neous equation for (1), i.e. (dp/ dr)— a(t) p=0 which we already know
how to solve, and since we only need one such function p(r) we set the
constant c.in (7) equal to one and take

p,(t)=exp(fa(t)dt).
For this p(z), Equation (9) can be written as

4 (1)y=n(Db(2). (10)

To obtain the general solution of the nonhomogeneous equation (3), that
is, to find all solutions of the nonhomogeneous equation, we take the indef-
inite integral (anti-derivative) of both sides of (10) which yields

()= [ w(@b(r)di+e

or
=-“—23(f y.(t)b(t)dt+c)=exp(—fa(t)dt)(f ,.(z)b(:)dzu). a1

Alternately, if we are interested in the specific solution of (3) satisfying
the initial condition y(f5)=y,, that is, if we want to solve the initial-value
problem

dy
E+a(’)}’=b(’)» y(t)=yo
then we can take the definite integral of both sides of (10) between 7, and ¢
to obtain that
]
B(1)y = B(to) o= [ m()b(s)ds
(1}

or

y= 7;‘5(#(’0))’0"' f,:u(s)b(s)ds). (12)

Remark 1. Notice how we used our knowledge of the solution of the ho-
mogeneous equation to find the function p(7) which enables us to solve the
nonhomogeneous equation. This is an excellent illustration of how we use
our knowledge of the solution of g simpler problem to solve a harder prob-
lem.

7



1 First-order differential equations

Remark 2. The function u(r) ==exp( f a(t) dt) is called an integrating factor

for the nonhomogeneous equation since after multiplying both sides by
1(r) we can immediately integrate the equation to find all solutions.

Remark 3. The reader should not memorize formulae (11) and (12).
Rather, we will solve all nonhomogeneous equations by first multiplying
both sides by u(7), by writing the new left-hand side as the derivative of
() y(2), and then by integrating both sides of the equation.

Remark 4. An alternative way of solving the initial-value problem (dy /dr)
+a(r)y =b(1), y(tg) =y, is to find the general solution (11) of (3) and then
use the initial condition y(1,)= Yo to evaluate the constant c. If the function
u(1)b(7) cannot be integrated directly, though, then we must take the defi-
nite integral of (10) to obtain (12), and this equation is then approximated
numerically.

Example 5. Find the general solution of the equation (dy/dr)— 2ty =1.
Solution. Here a(t)= —2t¢ so that

,u(:)=exp(fa(z)dz) =exp( - thdt) =e "

Multiplying both sides of the equation by u(r) we obtain the equivalent
equation

e"l(%‘—Zt'y)=te"2 or %e"zy=te"z
Hence, ;
- ~i? —e~"
e y=fte dt+c= +c
and

y()=—12+ce”.
Example 6. Find the solution of the initial-value problem

d “
E+21y=l, y()=2.

Solution. Here a(f)=2t so that
p.(t)=exp(fa(t)dt)=exp(f2tdt) vie®
Multiplying both sides of the equation by u(¢) we obtain that

a(d WM d,8\_. ¢
e (dt+21y) te” or dt(ey) te".



1.2 First-order linear differential equations

Hence,
t d 2 t 2
—e y(s)ds= | se* ds
j.““ y(s) fl
so that
52 I}
2 t e
e’y(s)|l=—i—L.
Consequently,
’2
By s & €
e‘y—2e )
and
y=—;-+§2£e"z=%+%el"z.

Example 7. Find the solution of the initial-value problem

& 1
g +y_T_-_f-—ti’ y(2)—3

Solution. Here a(t)=1, so that

p(t)=exp(fa(t)dt)=exp(fldt)=e’.

Multiplying both sides of the equation by u(7) we obtain that

e’(£+y)= & “or ie’y= ¢
dr 1+ 12 dt 1+2

Hence
t d j' e:
—eYy(s)ds= —ds,
fzds Y= | 15
so that
! s
efy—3e2=f ¢ _ds
AL
and
4 s
y=e ! 3e2+f - S ds|.
5 1+
EXERCISES

In each of Problems 1-7 find the general solution of the given differential
equation.
dy

dy A s
1. - +ycost=0 2. E+y\/t sint=0



1 First-order differential equations

dy 2t 1 ady '
= = . — y=
. v 1+ 2 e
Y o Y., a9
S.d—’+ty—l 6.;1-;+ly t
dy ! 2
7. = =1-
ar” 142’ 1+

In each of Problems 8-14, find the solution of the given initial-value prob-
lem.

s.%+\/1+z2y=o, y(0)=V3 9.%+\/1+12e"y-0, y(0)=1

m.%+\/1+12e‘5»=0, y(©0)=0 11.%—2ty=t, y(©0)=1

o o e iy
12, d—t+ty 1+, y(3)=0 13. 7;"")’ m, y(1)=2
dy
14. E—Zty=l, y0)=1
15. Find the general solution of the equation
(l+12)% +y=1+2)"2

(Hint: Divide both sides of the equation by 1+ r2)

16. Find the solution of the initial-value problem
W+ ray=t,  y)=1.

17. Find a continuous solution of the initial-value problem

Y +y=g(), y0)=0

where

_ 2 0<t<l
g(t)_{o, 1

18. Show that every solution of the equation (dy /dt)+ ay =be " where a and ¢
are positive constants and b is any real number approaches zero as ¢ ap-
proaches infinity.

19. Given the differential equation (dy /dt+a(t)y=f(t) with a(r) and f(¢) con-
tinuous for — oo < 1 < o0, a(t)> ¢>0, and lim,_, f(£)=0, show that every
solution tends to zero as ¢ approaches infinity.

When we derived the solution of the nonhomogeneous equation we tacitly
assumed that the functions a(f) and b(r) were continuous so that we could
perform the necessary integrations. If either of these functions was discon-
tinuous at a point ¢,, then we would expect that our solutions might be dis-
continuous at r=¢,. Problems 20-23 illustrate the variety of things that

10



