EEEEEEEEEEEEEEEEEEEE
PPPPPPPPPPPPPPPPPPPPPPPPPPPPP

! REAL-TIME

~ MULTICOMPUTER
~ SOFTWARE SYSTEMS

Richard Marlon Stein




3361276

REAL-TIME
MULTICOMPUTER
SOFTWARE
SYSTEMS

RICHARD MARLON STEIN |
llllllllllllllllllllll . E9361276




First published in 1992 by

ELLIS HORWOOD LIMITED

Market Cross House, Cooper Street,
Chichester, West Sussex, PO19 1EB, England

A division of
Simon & Schuster International Group

A Paramount Communications Company

© Ellis Horwood Limited, 1992

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission, in writing, of the publisher

Printed and bound in Great Britain
by Bookcraft, Midsomer Norton

British Library Cataloguing in Publication Data

A Catalogue Record for this book is available from the British Library

ISBN 0-13-770777-0

Library of Congress Cataloging-in-Publication Data

Available from the publishers

—p—



9361276

REAL-TIME MULTICOMPUTER
SOFTWARE SYSTEMS




ELLIS HORWOOD SERIES IN COMPUTERS AND THEIR APPLICATIONS
Series Editor: IAN CHIVERS, Senior Analyst, The Computer Centre, King’s College,
London, and formerly Senior Programmer and Analyst, Imperial College of Science and

Technology, University of London

Abramsky, S. & Hankin, C.J.

ABSTRACT INTERPRETATION OF DECLARATIVE LANGUAGES

Alexander, H. FORMALLY-BASED TOOLS AND TECHNIQUES FOR HUMAN-COMPUTER DIALOGUES
Anderson, J. MODEL-BASED COMPUTER VISION: A Synthesised Approach
Atherton, R. STRUCTURED PROGRAMMING WITH COMAL
Baeza-Yates, R.A. TEXT SEARCHING ALGORITHMS
Bailey, R. FUNCTIONAL PROGRAMMING WITH HOPE

Barrett, R., Ramsay, A. & Sloman, A.
Beardon, C., Lumsden, D. & Holmes, G.

Berztiss, A.
Bharath, R.

Bishop, P.

Brierley, B. & Kemble, I.
Britton, C.

Bullinger, H.-J. & Gunzenhauser, H.
Burns, A.

Carberry, J.C.

de Carlini, U..& Villano, U.
Chivers, I.D. & Sleighthome, J.
Clark, M.W.

Clark, M.W.

Cockshott, W.P.

POP-11

NATURAL LANGUAGE AND COMPUTATIONAL LINGUISTICS:

An Introduction
PROGRAMMING WITH GENERATORS
COMPUTERS AND GRAPH THEORY:

Representing Knowledge for Processing by Computers

FIFTH GENERATION COMPUTERS

COMPUTERS AS A TOOL IN LANGUAGE TEACHING
THE DATABASE PROBLEM: A Practitioner's Guide

SOFTWARE ERGONOMICS
NEW INFORMATION TECHNOLOGY
COBOL

TRANSPUTERS AND PARALLEL ARCHITECTURES
INTERACTIVE FORTRAN 77: A Hands on Approach 2nd Edition

PC-PORTABLE FORTRAN
TEX
A COMPILER WRITER’S TOOLBOX:

How to Implement Interactive Compilers for PCs with Turbo Pascal

Cockshott, W.P.

PS-ALGOL IMPLEMENTATIONS:

Applications in Persistent Object-Oriented Programming

Colomb, R.M. IMPLEMENTING PERSISTENT PROLOG: Large, Dynamic, Shared Procedures in Prolog
Cooper, M. VISUAL OCCLUSION AND THE INTERPRETATION OF AMBIGUOUS PICTURES
Cope, T COMPUTING USING BASIC
Curth, M.A. & Edelmann, H. APL
Dahlstrand, I. SOFTWARE PORTABILITY AND STANDARDS
Dah Ming Chiu, & Sudama, R. NETWORK MONITORING EXPLAINED: Design and Application
Dandamudi, S.P. HIERARCHICAL HYPERCUBE MULTICOMPUTER INTERCONNECTION NETWORKS
Dongarra, J., Duff, |., Gaffney, P., & McKee, S. VECTOR AND PARALLEL COMPUTING
Drop, R. WORKING WITH dBASE LANGUAGES
Dunne, P.E. COMPUTABILITY THEORY: Concepts and Applications
Eastlake, J.J. A STRUCTURED APPROACH TO COMPUTER STRATEGY
Eisenbach, S. FUNCTIONAL PROGRAMMING
Ellis, D. MEDICAL COMPUTING AND APPLICATIONS
Ennals, J.R. ARTIFICIAL INTELLIGENCE
Ennals, J.R., et al. INFORMATION TECHNOLOGY AND EDUCATION
Fillipic, B. PROLOG USER’S HANDBOOK
Ford, N. COMPUTER PROGRAMMING LANGUAGES

Ford, N.J., Ford, J.M., Holman, D.F. & Woodroffe, M.R.

COMPUTERS AND COMPUTER APPLICATIONS:

An Introduction for the 1990s

Ford, N. & Ford, J. INTRODUCING FORMAL METHODS: A Less Mathematical Approach

Gray, P.M.D.
Grill, E.
Grune, D. & Jacobs, C.J.H.

LOGIC, ALGEBRA AND DATABASES
RELATIONAL DATABASES
PARSING TECHNIQUES: A Practical Guide

Guariso, G. & Werthner, H. ENVIRONMENTAL DECISION SUPPORT SYSTEMS

Harland, D.M. CONCURRENCY AND PROGRAMMING LANGUAGES
Harland, D.M. POLYMORPHIC PROGRAMMING LANGUAGES
Harland, D.M. 5 REKURSIV
Henshall, J. & Shaw, S. 0S| EXPLAINED, 2nd Edition
Hepburn, P.H. FURTHER PROGRAMMING IN PROLOG
Hepburn, P.H. PROGRAMMING IN MICRO-PROLOG MADE SIMPLE
Hill, 1.D. & Meek, B.L. PROGRAMMING LANGUAGE STANDARDISATION

Hirschheim, R., Smithson, S. & Whitehouse, D. MICROCOMPUTERS AND THE HUMANITIES:

Survey and Recommendations

Hutchins, W.J. MACHINE TRANSLATION
Hutchison, D. FUNDAMENTALS OF COMPUTER LOGIC
Hutchison, D. & Silvester, P. COMPUTER LOGIC
Johnstone, A. LATEX CONCISELY
Kirkwood, J. HIGH PERFORMANCE RELATIONAL DATABASE DESIGN

Series continued at back of book



ELLIS HORWOOD SERIES IN COMPUTERS AND THEIR APPLICATIONS

Series Editor: IAN CHIVERS, Senior Analyst, The Computer Centre, King’s College,
London, and formerly Senior Programmer and Analyst, Imperial College of Science and
Technology, University of London

Koopman, P. STACK COMPUTERS
Kenning, M.-M. & Kenning, M.J. COMPUTERS AND LANGUAGE LEARNING: Current Theory and Practice
Koskimies, K. & Paakki, J. AUTOMATING LANGUAGE IMPLEMENTATION
Koster, C.H.A. TOP-DOWN PROGRAMMING WITH ELAN
Last, R. ARTIFICIAL INTELLIGENCE TECHNIQUES IN LANGUAGE LEARNING
Lester, C. A PRACTICAL APPROACH TO DATA STRUCTURES
Lucas, R. DATABASE APPLICATIONS USING PROLOG
Lucas, A. DESKTOP PUBLISHING
Maddix, F. HUMAN-COMPUTER INTERACTION: Theory and Practice
Maddix, F. & Morgan, G. SYSTEMS SOFTWARE
Matthews, J.J. FORTH
Michalewicz, Z. STATISTICAL AND SCIENTIFIC DATABASES
Millington, D. SYSTEMS ANALYSIS AND DESIGN FOR COMPUTER APPLICATIONS
Moseley, L.G., Sharp, J.A. & Salenieks, P. PASCAL IN PRACTICE
Moylan, P. ASSEMBLY LANGUAGE FOR ENGINEERS
Narayanan, A. & Sharkey, N.E. AN INTRODUCTION TO LISP
Parrington, N. & Roper, M. UNDERSTANDING SOFTWARE TESTING
Paterson, A. OFFICE SYSTEMS
Phillips, C. & Cornelius, B.J. COMPUTATIONAL NUMERICAL METHODS
Rahtz, S.P.Q. INFORMATION TECHNOLOGY IN THE HUMANITIES
Ramsden, E. MICROCOMPUTERS IN EDUCATION 2
Rubin, T. USER INTERFACE DESIGN FOR COMPUTER SYSTEMS
Rudd, A.S. PRACTICAL USAGE OF ISPF DIALOG MANAGER
Rudd, A.S. PRACTICAL USAGE OF REXX
Rudd, A.S. IMPLEMENTING PRACTICAL DB2 APPLICATIONS
Rudd, A.S. IMPLEMENTING PRACTICAL DATABASE MANAGER APPLICATIONS
Salomon, D. ASSEMBLERS AND LOADERS
de Saram, H. PROGRAMMING IN MICRO-PROLOG
Savic, D. OBJECT-ORIENTED PROGRAMMING WITH SMALLTALK/V
Schirmer, C. PROGRAMMING IN C FOR UNIX
Schofield, C.F. OPTIMIZING FORTRAN PROGRAMS
Semmens, L. & Allen, P. Z FOR SOFTWARE ENGINEERS
Sharp, J.A. DATA FLOW COMPUTING
Sherif, M.A. DATABASE PROJECTS
Smith, J.M. & Stutely, R. SGML
Spath, H. CLUSTER DISSECTION AND ANALYSIS
Stein, R. REAL-TIME MULTICOMPUTER SOFTWARE SYSTEMS
Teunissen, W.J. & van den Bos, J. 3D INTERACTIVE COMPUTER GRAPHICS
Tizzard, K. C FOR PROFESSIONAL PROGRAMMERS, 2nd Edition
Tsuiji, T. OPTIMIZING SCHEMES FOR STRUCTURED PROGRAMMING LANGUAGE PROCESSORS
Wexler, J. CONCURRENT PROGRAMMING IN OCCAM 2
Whiddett, R.J. CONCURRENT PROGRAMMING FOR SOFTWARE ENGINEERS
Whiddett, R.J., Berry, R.E., Blair, G.S., Hurley, P.N., Nicol, P.J. & Muir, S.J. UNIX
Xu, Duan-Zheng COMPUTER ANALYSIS OF SEQUENTIAL MEDICAL TRIALS
Yannakoudakis, E.J. & Hutton, P.J. SPEECH SYNTHESIS AND RECOGNITION SYSTEMS
Zech, R. FORTH FOR THE PROFESSIONAL

ELLIS HORWOOD SERIES IN COMPUTER COMMUNICATIONS AND
NETWORKING

Series Editor: R.J. DEASINGTON, Principal Consultant, PA Consulting Group, Edinburgh,
UK

Currie, W.S. LANS EXPLAINED
Chiu, Dah Ming & Sudama, Ram NETWORK MONITORING EXPLAINED
Deasington, R.J. A PRACTICAL GUIDE TO COMPUTER COMMUNICATIONS AND NETWORKING,

2nd Edition
Deasington, R.J. X.25 EXPLAINED, 2nd Edition
Henshall, J. & Shaw, S. OSI EXPLAINED, 2nd Edition
Kauffels, F.-J. PRACTICAL LANS ANALYSED
Kauffels, F.-J. PRACTICAL NETWORKS ANALYSED
Kauffels, F.-J. UNDERSTANDING DATA COMMUNICATIONS

Muftic, S. SECURITY MECHANISMS FOR COMPUTER NETWORKS



Table of Contents

Foreword

Preface

Part I -- Concepts and Practices

1 Why Multicomputers?
1.1 Definitions
1.2 Multicomputer Applications
1.3 Physical System Requirements for Multicomputers

2 Project Planning and Preparation
2.1 Project Planning Basics

2.1.1 The Idea: Foundation for the Project Plan
2.1.2 Statement of Innovative Claims
2.1.3 Deliverable Item Summary
2.1.4 Cost and Schedule Summary
2.1.5 Statement of Work
2.1.6 Technology Transfer
2.1.7 Technical Rationale
2.1.8 Schedule
2.1.9 Principal Investigator Summary
2.1.10 Facility Summary

3 Multicomputer Software Metrics
3.1 Metrics and the Software Engineering Process
3.2 Sequential Software Engineering Metrics
3.2.1 Software Lifecycle
3.2.2 The Spiral Model and Rapid Prototyping
3.2.3 Spiral Models in Neophyte Organizations
3.3 COCOMO
3.3.1 Basic COCOMO
3.3.2 Work Breakdown Structure
3.3.3 Calendar Estimation
3.3.4 Workerloading
3.4 Multicomputer Development Cost Assessment
3.4.1 Data Parallel Software
3.4.2 Control Parallel Software
3.4.3 Comparison of Metrics

S66

22

27

SEEVBREY

60
62
62

63
63

65

ISR

69
70
71
72
73
74



2 Contents

4 Introduction to Real-time Computer Systems
4.1 Definition of a Real-time System
4.1.1 Classification
4.2 Design Environment Practices
4.2.1 Real-time Engineering Environments
4.2.2 Development Tools in Real-time Systems Design
4.3 Real-time Simulation Structures
43.1 Executive
4.3.4 Interrupts
4.3.5 1/O Operations
4.3.6 Interprocess Communication
4.4 Performance Measurement Assessment
4.4.1 Simulation Performance Measurement
4.4.3 Debugging
4.4.4 Monitoring
4.5 Considerations for Testing Real-time Systems

5 Software Safety
5.1 Definitions
5.1.1 Software Reliability
5.1.2 Examples of Software Failure
5.2 Safety Categorization
5.2.1 Error Introduction and Safety Compromise
5.3 Safety Analysis Methods and Requirements
5.3.1 Requirements
5.3.2 Standard Methods for Software Safety Analysis
5.4 Formal Methods and Real-time Software Safety Issues
5.4.1 The Z Specification Language

Part II -- Multicomputer Methods

6 Multicomputer Software Design Issues

6.1 Comparison of Sequential and Concurrent Software

Engineering
6.2 Logical Concurrency
6.2.1 Replicated Logical Concurrency
6.2.2 Process Structure Topology
6.3 Message-passing Basics
6.3.1 Properties and Definitions
6.3.2 Routing
6.3.3 Casting
6.4 Deadlock
6.5 Debugging
6.6 Physical Concurrency and Multicomputer Topology
6.7 A Numerical Design Example

77
77
79
80
81
82
87
89
95
98

101
101
104
104
106

109
109
110
112
119
119

121

130
132

135

135

142
144
147
148
150
152
152
153
156
158



Contents

6.8 Alternatives to Explicit Message-passing
6.9 Program Efficiency

7 Load Balancing
7.1 A Partial Taxonomy of Load Balancing
7.1.1 Regular Domains
7.1.2 Static Domains
7.1.3 Dynamic Domains
7.1.4 Real-time Domains
7.2 Simulated Annealing and Static Techniques
7.3 Dynamic Technique
7.4 Real-time Technique

8 Synchronization
8.1 Background
8.2 The Carlini-Villano Synchronization Method
9 Advanced Topics
9.1 The Success of von Neumann
9.2 PRAM Overview
9.3 Performance Issues
Bibliography
Author’s Biography
Trademark Acknowledgement

Index

168
169

171
171
173
173
175
178
179
183
186

193
193
197

201
201

229

231



Dedication

To the loving memory of my fraternal and paternal grandparents: Edwin
Morris and Beatrice Stalk, and David Nathaniel and Francis Hilda Stein.

To those who know what is not known.



Foreword

This text is a comfortable introduction to a complex and fascinating subject. The
author’s style is smooth and readable. His emphasis on software safety and the ethical
use of multicomputer systems is well founded, and cannot be understated. This text
affords a cognizant examination -- a snapshot in time really -- of an advancing
technology from an active practitioner of multicomputer systems engineering. The
technical descriptions and discussions are pertinent and colloquial. Anyone who is
interested in becoming a practicing multicomputer software engineer with a bent for
fast or real-time systems should peruse this text for a responsible and conscientious
perspective of a continuously evolving scalable technology.

David L. Fielding

President, North American Transputer Users Group
Cornell University

Cornell, NY USA

January, 1992






Preface

As a vehicle for simulation and investigation, message-passing parallel computers --
multicomputer systems -- represent the most cost-effective problem solving tools yet
invented. The scalable software built for these machines can provide insight and
vision, but it can also imbue a nation with a strategic capability. Scalable
multicomputer simulations can at once inform and enlighten, or destroy and pervert
any purpose or conceivable idea created by mankind. Software applications are harder
to construct in this realm of computation, and designing them requires unique skills
and tools. The requisite engineering discipline must be acquired, practiced, and
refined before effective and responsible use of a multicomputer platform can take
place.

This text posits approaches to the solution of multicomputer software
engineering problems. Among the questions explored by this text are: For what
purpose have multicomputer systems been invented, and how are they applicable to the
scientific and engineering problems which confront our society? What activities are
necessary to prepare a proposal for a project based on a multicomputer system? What
methods are available to estimate software engineering costs and schedule for a
massively parallel simulation? How is software safety analysis used to prevent
annoying or life-threatening mishaps from arising during simulation execution? How
are real-time simulations engineered? What practices and skills are necessary to
design and build a multicomputer simulation? How is a load balance realized? What
methods are known for synchronizing a real-time multicomputer simulation? Answers
to these questions are explored in the chapters of this book.

While the technical issues surrounding multicomputer software systems
engineering are very important, they pale in comparison to the idea of a responsible
multicomputer software engineering discipline. This state of mind is embraced and
practiced by professional software engineers, and is expressed as a sincere concern for
the societal implications of a finished edifice. Recognizing the likelihood of success
or disaster hinges on the sensitive intuition of engineering judgement, a valuable
characteristic of responsible practitioners. In contrast, the pure intellectual satisfaction
of the engineering process is always visible, easier to appreciate and reward.

The end result of almost all engineering activities is a finished product which
someone will use. The product may find a place in a home or a space shuttle. In
either case, the consumer accepts that the product is safe, and will not harm the
operator, or damage external equipment when used. The multicomputer software



8 Preface

engineering discipline espoused in this text attempts to heighten the engineer’s
awareness of the principal steps involved while engineering a real-time multicomputer
simulation. A real-time computer system requires disciplined software engineering
skills to correctly design and build. Not only must the software correctly function in
an algorithmic sense, but the results produced by the software must be temporally
correct. A rare blend of skills are required to construct predictably correct real-time
simulation software. Real-time multicomputer simulations are especially demanding
in this respect.

With few exceptions, a real-time multicomputer simulation represents the
technical pinnacle of software engineering accomplishment. The temporal coordination
of tens, hundreds, or thousands of separate processing entities can be accomplished
and harnessed for the benefit of mankind. Like so many soldiers on parade in perfect
cadence, or the soothing instrumental notes and melodies of an orchestral
arrangement, their actions and operations must be precisely controlled, regulated, and
directed for an effective result to develop. Alternatively, the same platform can be
driven with criminal intent, producing chaos and catastrophe for an overtly evil or
amoral purpose. Multicomputer systems are not toys; they are seriously powerful
instruments that can at once possess the destructive potential of a strategic weapon,
or the humanitarian capacity of penicillin. The multicomputer software engincer must
commit to a moral obligation and a code of ethics that restricts their practice to the
safety and betterment of society.

Technology is changing at an exponentially scalable rate. The complexity
produced from this accelerated evolutionary process is far beyond any individual’s or
any organization’s capacity to recognize, control, or accurately contemplate. The
societal and global ramifications resulting from this sustained and compounded
introduction are profound. If technology obeyed Darwinian natural selection and
survival of the fittest, the overpopulation of so many digital electronic devices would
have died off by now, just like overpopulation of a species eventually exhausts a
habitat’s food supply, and equilibrium is restored through death by starvation. But
technology is exempt from Darwinian law.

For the promulgation of software engineering safety awareness, and to
promote recognition of the implicit strategic nature of multicomputer systems, I have
attempted to combine and communicate my collectively acquired industrial,
professional, and independent experience with both real-time simulation and
multicomputer systems to you, the reader. Several months previous, I relished the
thought of the technical challenge to describe a rapidly emerging field of research and
investigation. But during the course of my background investigation, information
assemblage, and revisions to the text, I developed a disquieting notion about this arena.
This book is a distillation of my experience using multicomputer systems (chiefly Inmos
transputer! boards which I purchased way back in 1985), and a recognition of the

1 The transputer is a very practical device and affords an inexpensive avenue to
start multicomputer investigations. My sincerest effort to avoid discussion of specific
hardware products is represented here; I do not perceive this enthusiasm as an
endorsement.



Preface 9

important and increasingly visible role they serve.

A democratic society has many rules and structures, such as the laws
established by the United States Bill of Rights, to protect the citizenry and prevent
societal breakdown. Technology does not obey the Constitution, but the ideas and
freedom of expression conveyed through technology are principally sponsored by it.
As a vehicle for expression, multicomputer technology wiclds immense power, and can
be exploited for any purpose. With no legal or physical controls to regulate the
advance of an unchecked specie, what will be the result? I do not know this answer,
but it is very easy to assume to the worst. T hope that this text will serve as a baseline
for the emerging practitioners of real-time multicomputer software systems engineering
to consider the consequences of their work before undertaking design with impunity.
I importune you to do so with caution and care.?

This text contains two principal sections. Part 1, Concepts and Practices,
presents background material on multicomputer systems, project planning and
preparation, software metrics, an introduction to real-time computer systems, and
software safety. *This collection of 5 chapters provides a foundation for software
engineering practice and discipline. Part 2, Multicomputer Methods, supplies practical
design information for scalable software engineering activities. Chapters that discuss
software design, load balancing, and synchronization for multicomputer simulations are
supplied. Each chapter is largely self-contained and decoupled from the others. They
may be read in any order, depending on the individual’s expertise and strength. Some
background in software engineering is necessary and assumed. This book is not
intended for the novice or freshman. However, it is targeted at the practicing
professional software engineer with an eye toward real-world situations and experience.

Chapter 1 discusses multicomputer systems as a potential mechanism for
yielding solutions to complex scientific, engineering, and bio-medical problems
identified by the United States Federal High Performance Computing Program. Other
nations, such as Japan, or the European Economic Community, have enacted similar
programs to ensure a measure of technologically-derived economic security in the
future. A brief discussion is given as to why multicomputers can address complex
simulation issues, and are ideally suited to deliver cost-effective scalable solutions.

Chapter 2 discusses project planning and preparation. If one perceives the
need to create a scalable multicomputer simulation solution, how is the project
Justified, a plan prepared and supported? The chapter is based on the presentation and
discussion of a sample proposal written to the format solicited by the United States’
Defense Advanced Research Projects Agency (DARPA).

Chapter 3 discusses software metrics. The COnstructive COst MOdel
(COCOMO) developed by Barry W. Bochm is used as a platform to illustrate how a
software project is estimated to quantify cost and schedule. Software engineering is
more of an art than a science. Many factors affect the software lifecycle, the stages
of planning, development, and maintenance that describe the useful lifetime of a
software system from creation through retirement. Organizing an accurate estimate

% The author is painfully aware of this super-hypocritical argument -- a dilemma
which scientists and engineers often confront.



10 Preface

of the engineering costs is far harder for a software product than, say, building an
automobile or a toaster oven.

Two varieties of software are known for multicomputer simulations: data
parallel and control parallel. On one hand, data parallel simulations are simply
replicated instantiations of one (typically) simple process or calculation. This is true
for many numerically intensive computations, like weather forecasting, finite element
structure problems, or image processing; the same computation is conducted for each
data element. In contrast, a control parallel simulation relies on a highly articulated
process structure where many unique processes are combined to synthesize a simulated
representation of a natural or man-made phenomenon. For each control parallel
process, the argument is made to justify a separate engineering and cost estimate for
lifecycle purposes. Control parallel simulations require multiple applications of
software metric estimation to accurately cost.

Chapter 4 presents a capsulized introduction to real-time system simulation.
Special attention is given to the predictability aspects of real-time systems. A real-time
system must produce algorithmically or algebraically correct results which are also
temporally correct. A real-time simulation is often a critical component of a larger
system, such as an airplane, satellite, or an automobile. If the real-time system is not
predictable under all circumstances, serious consequences can result in the event of
system failure. The chapter outlines essential information on executive control
structure, engineering tool requirements which are often found in real-time
environments, and other common properties of this engineering discipline. The
discussion is intended to impress an understanding and appreciation of real-time
systems for their complexity, and give insight into some internal aspects of their
implementation.

Software safety is the topic of Chapter 5. When good software goes bad,
terrible things can happen which should not ever occur. Four examples of software
failure are given. They have been reprinted from the pages of widely published
newspapers, magazines, and journals. The strong and inseparable computer
dependency seen in Western culture weaves at once a life-threatening and life-
sustaining vein through our lives. Building software for use by others carries an
implicit trust and ubiquity that is shattered each time the telephone does not work, or
the ATM will not dispense money.

This chapter provides an overview of current software safety techniques and
practice. Safety analysis techniques like Petri nets and software fault trees are
introduced to show what kinds of methods are available to detect software faults before
a failure occurs. While software safety has a terrific impact from the user’s
perspective, the engineering and design aspects are far more difficult to manage in a
cost-effective way. Over 60% of all errors introduced into software arise from poor
requirements definition or ambiguity. A discussion of formal specification methods is
presented which argues for their adoption. If the requirement is poorly understood,
it is likely that the final software implementation may also generate spurious
functionality which can lead to disaster.

In Part 2, beginning with Chapter 6, multicomputer software design practice
is discussed with an eye toward important design and implementation issues. To build
multicomputer software, a different state of mind is necessary, one which is alien to



Preface 11

sequential software engineering practices. A method of software design is presented
which is derived from a process structure graph analysis representation of simulation.
This is a familiar concept to anyone who has studied Hoare’s Communicating
Sequential Processes (CSP), or experienced the Occam model of programming on the
Inmos transputer. The text explains how to construct this logically concurrent
representation, simulate it within a comfortable environment to verify determinism, and
then transform it to a physically concurrent multicomputer system. An example
problem is provided which illustrates the concurrent thought process required to
successfully carry out these operations.

A multicomputer runs most efficiently when all computation elements are
equally loaded with data. The notion of load balance is introduced and examined in
Chapter 7 along with a discussion of several techniques for realizing one. A partial
taxonomy is created of the known and widely practiced load balancing methods. One
technique is posited for real-time multicomputer simulations, while the majority are
efficacious for purely static or quasi-dynamic problems.

The issue of temporal regulation and synchronization of the multicomputer
simulation is the focus of Chapter 8. The distributed nature of multicomputer
architecture poses unique problems for the temporal coordination of ten, one hundred,
or several thousand computation elements, since each has it own clock source. A
discussion of a synchronization algorithm is given that is applicable to homogenous
multicomputer platforms.

Chapter 9 supplies a brief discussion of emerging trends and advanced
technology likely to replace the existing generation of multicomputers. The parallel
random access machine (PRAM) may well become the first general purpose parallel
processing architecture, where the obstacles of load balance, topology, and data
decomposition disappear from the multicomputer simulation scene.

Acknowledgments

I give my sincerest thanks to the staff at Ellis Horwood for their patience,
prodding, and encouragement during the preparation of this manuscript. I am also
grateful to Mr. Philip Presser, a long-time friend, mentor, and associate. I have been
very fortunate to enjoy, experience, and absorb his thoughtful and oracle-like wisdom,
patience, discipline, and insightful recognition of engineering methodology. Finally,
and most importantly, I acknowledge the love and support from my family who have
cared, nurtured, and raised their son, brother, nephew, and cousin with endearment
and kindness.



