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PREFACE

This volume contains the proceedings of the international meeting ”Workshop on
surfaces, submanifolds and their applications” organised at Leeds, England, from May
14 till May 18, 1990. We do believe that this meeting turned out to be rather successfull:
it offered many really beautiful lectures on fundamental recent progress in the field of
differential geometry of submanifolds, and throughout the meeting there was a lively
exchange of ideas and information between all participants.

On behalf of the organisers, I would like to thank all participants for their contri-
bution to our meeting at Leeds. Moreover, on behalf of all participants, I would like
to thank the members of the local department of mathematics, both mathematicians
and administrative personel, for their help in caring for the practical organisation. In
particular, many special thanks are due to the main organiser of this meeting, our col-
league Alan West, and also to our colleague Sheila Carter; as they form the well known
Leeds-"tandem” for research in differential geometry, I think that they also did a lot of
the work related to the organisation of this meeting together. Moreover, I would like
to express our thanks to Mrs. Alan West for her work done during this meeting. In
short, mainly these three people offered us a week at Leeds which, both scientifically
and socially, will be very well remembered indeed !

We thank the London Mathematical Society and the Science and Engineering Re-
search Council for their generous financial support to our meeting.

Concerning the editing of the proceedings, I would like to thank Alan West, and
also my coworker Georges Zafindratafa at Leuven, for their help. Some authors are
more slowly than others to send in their paper. Based on my own experience, I can
understand that there may be reasons to ask for some postponement of the originally
planned deadline, and then later ask for the iteration of this process... As before, also
now I have been accepting this, since, mainly, I do believe that a more complete list of
papers presented at the meeting, even when published with some delay, is to be prefered
over rather incomplete proceedings even appearing very shortly after the meeting.

As usual, we do thank the World Scientific Publishing Co for publishing these pro-
ceedings.

Leopold Verstraelen
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AFFINE DIFFERENTIAL GEOMETRY
OF COMPLEX HYPERSURFACES

KINETSU ABE

Department of Mathematics
The University of Connecticut
Storrs, CT 06269, U.S.A.

1 Introduction

In this paper a complex analogue of affine differential geometry of real
hypersurfaces is discussed.

Let M™ be a holomorphic hypersurface of A™' | which is C™' re-
garded as an affine space. The group of complex affine transformations,
then, consists of the complex special linear group and the translations of
o,

In the real case [2], it is of fundamental importance that there exists a
unique transversal vector field called the affine normal field of M™ .

This paper begins with establishing a set of n+2 transversal (local) vector
fields which play the role of the affine normal field. Any one of these vector
fields can be obtained from another by multiplying an (n+2)-nd root of unity.
They are, as a set, invariant under the affine transformations which leave M™
fixed as a whole.

The technique used here can, perhaps, be called the method of complex
moving frames. The papers of Chern [4] and Flanders [5] have been especially
helpful. Indeed, the first half of this paper may be regarded as a complex
modification and refinement of theirs.

The second half deals with the determination of the homogeneous complex
affine surfaces in A®. A homogeneous complex affine surface in A® is a



surface which is the orbit of a point in A® under a subgroup action of the
affine transformation group.

The result states that, except for the quadrics, there are basically only
several nondegenerate homogeneous complex affine surfaces in A® | see The-
orems 2 and 3.

The scheme of the proof is similar to that of Guggenheimer [6]. Also see
Jensen [8]. That surfaces are holomorphic, in fact, makes the argument less
complicated than the real case.

As a concluding remark, a set of counterexamples for the complex version
of Jorgens’ theorem [9] is presented to show that the analogy to the real case
often breaks down. The reasons are often obvious, although sometimes less
clear.

In a forthcoming paper [1], a more comprehensive study of the affine dif-
ferential geometry of complex hypersurfaces will be taken up. There some
affine connections in the hypersurfaces will be introduced and more geometric
aspects will be emphasized. It is therefore hoped that similarity and differ-
ence of the real and complex affine differential geometries will more lucidly
emerge.

Finally, many thanks are due to Professor K. Nomizu. Through his lec-
tures in the seminars at Brown, the author was introduced to the affine
differential geometry of real hypersurfaces.

The author also thanks M. Magid and E. Spiegel for the useful conversa-
tions with them during the preparation of this paper.

2 Complex Affine Hypersurfaces

Let A™! denote the complex (n + 1)-dimensional Euclidean space with the
flat (affine) connection. By the (complex) special affine transformation group
SA(n+1) of A™! wemean the natural semi-direct product of SL(n+1,C)
and C™*'. Here SL(n+1,C) denotes the set of all (n+1) x (n+1)-complex
matrices with determinant 1, and C™*! represents the group of translations
in A™?! under the addition in C™!. SA(n+1) has the following well known
matrix representation, with respect to which the group operation becomes



the usual matrix product:

a; a
A AeSL(n+1,C) and | - |ec™. (1)
Qn41 .
0---0 1 An+1

In particular, an element of SL(n + 1,C) will be often referred to as an
unimodular transformation.

Let x : M™! — A be a holomorphic immersion of a complex n-
dimensional manifold M™ into A™' with the standard complex structure.
We will denote by TM™ the complex tangent bundle of M™, i.e., the holo-
morphic part of the complexified tangent bundle. In like manner, we will
represent by TM? the complex tangent space of M™ at z.

By a (complex) frame (z,e,,...,ens1) of a point z in A™', one means
a pair of a point z in A™?' and (n + 1) (complex) vectors ey,...,e, in
C™! and such that e;,...,e,41 are obtained from the standard carte-
sian coordinate vectors (1,...,0),...,(0,...,1) in C™! via an element of
SL(n+1,C).

As a convention, given (n+1) vectors Xq,--+, Xp4q in C™ | X, -+, Xy
will mean the determinant of the (n + 1)x(n + 1)-matrix obtained from
X1, -+, Xn41 by regarding them as column vectors of the matrix in the nat-
ural sense. Hence, for a frame (z,€e1, -, €nt1), €1, -, €n41| =1.

From now on (for the time being, anyway), we will be interested only
in holomorphic frames; namely, the frame represented by holomorphic cross-
sections of the frame bundle. A frame thus will mean a holomorphic frame
unless otherwise specified. We also employ the convention that all the Greek
letters «, 3,7 etc. run 1 through n + 1 and all the English letters a,b,c
etc. run 1 through n. We also adopt the well accepted convention in tensor
calculus; whenever the same letter appears as a superscript and a subscript,
the summation over the letter must be performed.



Now considering the holomorphic immersion x as a vector-valued func-
tion, one may take its exterior derivative dx , resulting a holomorphic vector
valued 1-form. We will denote it by :

dX = weq, (2)

where w® is a holomorphic 1-form.
For each e, , we also have

de, = Wlep (3)

Here w? is a holomorphic 1-form.
Integrability condition gives rise to the well known structural equations:

dw® = P A w3, (4)
dwf = wy AWS. (5)

Since
0=d1=d|81,"',€"+1 |=2I61,"‘,d€a,"',6n+1 ,
o

one has

ws =0. (6)

If one chooses the frames whose first n vectors are tangential to M™, we
get w1 =0 on M". Hence,



dw™! = WP AWt = AWM =0. (7

Applying Cartan’s lemma to (7), one gets holomorphic functions k;; such
that

Wit = h.‘,'wi and h;; = hji. ®)

Thus, given a frame, one gets a (complex) symmetric quadratic form
[] = ww?it! = hjw'e’.

Call [] the second fundamental form of x relative to the frame. Notice
that I is a holomorphic quadratic form.

Let (z,e},---,e€,,) be another holomorphic frame associated with x,
ie., e}, ---,en,, are tangential to x at x € M™ . Then there is a field of
holomorphic unimodular transformations A = (a3) such that

k -1 i
e; =ajer and eh,; =a eny1+ap, e 9)

-1
Here ajfl =a™' = [det(a'})] and a™!' =0.

1

(9) can be represented in a matrix product:

[ea] =

[ea] , A = (a)). (10)
0

1 n -1
Apt1y" " "r8ny1 @



Reversing the role of [e,] and [e}] we get an (n + 1) X (n + 1) -matrix
B = (¥°) such that

a

0
b:u+1"" ’b:+1 a
where, B = (bi) = A™!, or albi =6 and detB=a"'.

The structural equations (2) and (3) for (z,e*) become
dx = w*e and del, = w'ﬁe;, (12)

There exist the following relations between [w®] and [w**] , correspond-
ing to (10) and (11) ; denoting by AT and B” the transposes of A and
B, respectively,

[w?] = AT[w**] and [w*®]=BT[w"]. (13)
The forms w!*! and w*?*! are related as followed:
w?+1 = l elv"”enydei I

= | bfeiv bkelnd(b 62) |

— k k 1
= |bf62a"'1bnekyb ‘"+ ‘+1|

a_lbf‘w"t“.



Thus, the second fundamental forms [[ and [[* relative to the frames
(x,€ea) and (x,e%) are related as follows. From (8) and (14),

. o L Y gy
[ =w'wpt! = djw e bfw it = Sfa Wit =o' [ ], (15)

From (15) follows that the rank of the second fundamental form is invariant
under the choice of a frame. One says that a holomorphic hypersurface M™ €
A™"! is non-degenerate if the second fundamental form is non-degenerate.
Let us assume that M™ is non-degenerate from now on.

Set

hij = ]_I(e;,ej) and H = det(h;;) # 0.
From (15) one gets

h,‘j = h;jw‘wj(e;, CJ')

= a 'hjw*w(e; ;)

(16)
= a 'hpwkw (e, bler)
= a BBy,
Hence,
H* = g™ 2], (17)

(17) implies that
(H*)™¥7 = aH770,



where 6 is an (n + 2)-nd root of unity. We define a normalized second

fundamental form [] relative to the frame (z,eq)

[[=0H7=]].

Let ]:I‘ be the normalized second fundamental form for the frame (z,ey*).

Then from (15) and (17),

bl

" = e—'H==r

= g 1 H7E0 1a]]
= o~ Hm (]

= 011,

where § is an (n + 2)-nd root of unity.
Taking the exterior derivative of (8), one gets

dwt! = d(hgkwk) = dhy A + hiw’ A w}‘.
On the other hand, from (5),

n+l _ o n+l 1 m n+1 n+1
dw!™ = Wi AW = Wi A (himw™) + Wi AW

Comparing (19) and (20), one gets

(dh,’], - h,-jwi - h(kwf + h,kw;‘I}) A wk =0.

Applying Cartan’s lemma to (21), one gets

(19)

(20)

(21)



