R K Shyamasundar «S Ramesh

el Time Programming

[aN0Ua0es, SpeCHication EIH[I UEH IEHII[IH

feal Time Programming

[aN0Ua0ESs, SPECiTication and Uentication

R K Shyamasundar

Tata Institute of Fundamental Research, Mumbai

S Ramesh

Indian Institute of Technology, Bombay

\\:3 World Scientific

NEW JERSEY - LONDON - SINGAPORE - BEIJING - SHANGHAI - HONG KONG - TAIPEl - CHENNAI

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

REAL TIME PROGRAMMING: LANGUAGES, SPECIFICATION AND VERIFICATION
Copyright © 2010 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or
mechanical, including photocopying, recording or any information storage and retrieval system now known or to
be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center,
Inc.,222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from
the publisher.

ISBN-13 978-981-02-2566-7
ISBN-10 981-02-2566-0

Desk Editor: Tjan Kwang Wei

Printed by Fulsland Offset Printing (S) Pte Ltd. Singapore

Preface

The concept of process control has made Embedded Systems all pervasive.
The applications range from home appliances (video pumps, cameras, set-
top boxes, games), personal telecom and multimedia, medical therapy sys-
tems, process control systems, automobiles, avionics, tactical Control, nu-
clear industry etc. If one considers the processors by numbers or volume, it
is of interest to note that only 1% of the total number of processors man-
ufactured are used for general purpose computers (say desktop etc); the
rest are all used in embedded systems. While general purpose processors
is essentially a dedicated general purpose computational system, an embed-
ded system is a complex system consisting of a package of hardware and
software systems that can include a range of mechanical systems interfaced
with the real-world to realize repetitive monitoring/actuating of the envi-
ronment. Its’ purpose is a dedicated function rather than general purpose
computing. Hence, in embedded systems the focus is on the control logic
that governs the interaction of the system with the real world. In other
words, the challenges in the design of embedded systems lies in interfacing
with the real-world meeting concurrent real-time constraints, and stringent
safety considerations to augment component (sensor/actuator) interfaces.
Thus, challenges towards the specification, design and realization of embed-
ded systems can be summarized as follows:

1. Rigorous design and verification methodologies for embedded software.
The grand challenge advocated by David Harel in this direction can
be summarized as follows:

e Devise frameworks for developing complex reactive systems pro-
viding means for describing and analyzing systems with the un-
derstanding that the structure be driven and propelled by be-
haviour of the systems. Needless to say tools play a vital role in
the realization of such a dream.

vi Preface

2. Software Plays an important role in the design of embedded systems.
A study shows that at least 60% of development time spent is spent
on software coding. This has made a paradigm shift from hardware to
software. This is also necessitated by the need to include late speci-
fication changes, shorter lifetime of embedded systems, and the need
for the reuse of previous design functions independent of the platform.
Thus, the main challenge is to invent design structures that match with
the application domain. Developing a language independent platform
to support such designs is another serious challenge.

In this book, we shall be focussing on the first goal.

Embedded control applications are concurrent and often real-time in
nature: a controller runs concurrently with the physical system being con-
trolled and is required to respond to the changes in the physical system state
not only correctly but at the right times. For instance, a brake-by-wire sub-
system of a car needs to brake the wheels of the car within a few milliseconds
after detecting the pressing of the brake pedal. The development of real-
time concurrent systems is many orders of magnitude more difficult than
conventional data processing applications due to simultaneous evolution of
concurrent components.

An emerging methodology of development of embedded control applica-
tions is model-based development. One of the main features of model based
development paradigm is the use of models which are high level abstractions
of software (and systems) and can be easily developed from requirements
and are executable; the models can be automatically translated into low
level code which can be mapped to target platform and integrated. Exe-
cutable models help in early debugging of design leading to shorter and fast
design cycle.

Synchronous programming methodology is one of the successful model
based development methodologies of real-time embedded applications and
hardware. This methodology was developed at around the same time by
three French groups. An important feature of this methodology is a sim-
plified and elegant abstraction of real-time: the synchrony hypothesis. Ac-
cording to this hypothesis, the reaction time of the controller implemented
in software is zero. The validity of this assumption stems from the fact that
the controllers are executed by powerful micro-controllers and processors
which are quite fast compared to the slow physical system being controlled.
The synchrony hypothesis greatly simplifies the design and verification of
real-time systems as it reduces the number of interleaved executions of con-
current systems. Synchronous programs can also be efficiently translated

Preface vil

into low level code that can run on a variety of platforms. Recently these
technicques have been commercialized into a number of tools that are being
used in the aerospace and process control industries.

Spurred by the success of the synchronous methodology in many im-
portant industrial control applications, and due to the power and relative
unawareness of this technology, we decided to devote this monograph to
this methodology. In this monograph, we focus on the basic elements of
synchronous methodology and include a detailed description of three syn-
chronous languages: ESTEREL , Lustre and Argos.

Synchronous Languages are suitable for centralized, single processor and
sequential applications. But many complex real-time embedded systems
are often implemented over distributed platforms. Recently, the authors
of the monograph have extended the synchronous methodology to such
applications, developing modeling languages like Communicating Reactive
Processes (CRP), Multi-clock ESTEREL and Communicating Reactive State
Machines (CRSM). We discuss aspects of these formalisms and illustrate
applications of the same.

Organization of the Monograph

The organization of the monograph is as follows. Chapters 1 - 4 discuss
the general aspects of real time and reactive systems. Chapters 5 - 10
contain detailed descriptions of the ESTEREL language. While Section 5
gives in detail all the important constructs of ESTEREL , Chapter 6 gives a
number of small case studies highlighting the features and tools of ESTEREL .
Chapters 7 and 8 are concerned with advanced constructs of ESTEREL .
Chapter 9 discusses a large case study in ESTEREL while the formal aspects
of ESTEREL are given in Chapter 10. Chapters 11 - 12 deal with the other
synchronous language, Lustre. While Section 11 introduces the features of
Lustre, Section 12 discusses the modeling of Time Triggered Protocol in
Lustre followed by a discussion of graphical language Argos motivated from
Statecharts in Section 13. Chapter 14 discusses the verification methods
used for ESTEREL and followed by observer based verification for Lustre.
While many reactive systems can be described using synchronous lan-
guages, large distributed applications demand a more flexible approach of
combining both synchronous and asynchronous features. Chapter 16 in-
troduces Communicating Reactive Processes (CRP), one of the earliest ap-
proach to combining synchrony and asynchrony. The semantic challenges
of CRP is described in chapter 17 along with a formal semantics of CRP.

viil Preface

Chapter 18 discusses a pictorial variant of CRP, called Communicating Re-
active State Machines Chapter 19 demonstrates how real time systems can
be captured within the synchronous framework of ESTEREL . Multi-clock
ESTEREL is a generalization the basic ESTEREL and is discussed in Chapter
20; multiclock ESTEREL permits modeling subsystems with different clocks.
Chapter 21 summarizes the topics covered with a few important observa-
tions.

Dependence of the chapters

For the convenience of the reader, the dependence of the chapters are given
below, where a — b denotes that Chapter b requires reading of Chapter a
1-2—-53-54—-55—-6—-7—-8—>9

5—6—10,5—11—12 — 13

7— 12,5 — 14,5 — 15,11 — 16

5— 17— 18,17 — 19,5 — 20,5 — 21

The intended audience for the monograph include advanced graduate
students and researchers interested in synchronous languages and embedded
software engineering; practicing engineers involved in embedded software
development would also benefit from the book. The monograph would also
provide useful material for part of a graduate course on embedded systems.

Acknowledgement

It is great pleasure to thank the inventors of synchronous languages Es-
TEREL (Gerard Berry), LUSTRE (Paul Caspi, Nicolas Halbwachs), SIGNAL
(P. Le Guernic , Albert Benveniste), Statecharts (David Harel, Amir Pnueli),
and ArRcos (Florence Maraninchi), with whom the authors had close col-
laborations and discussions. We also thank the Synchronous Programming
Community (the authors have gained a lot in their participation in the
yearly Synchronous Programming Workshops) with whom we have had a
long association.

The major part of the work was done while the authors were with Tata
Institute of Fundamental Research, Mumbai, and Indian Institute of Tech-
nology Bombay, Mumbai respectively. We gratefully acknowledge the gen-
erous support of these Institutions. Many of the joint works in the area
came through the projects under Indo-French Centre for Promotion of Ad-
vanced Research (IFCPAR), New Delhi. It is pleasure to thank IFCPAR for
the generous support. Professor R.K. Shyamasundar thanks IBM India Re-
search Lab., New Delhi, with which he was affiliated during 2005-2008 and
Prof. S. Ramesh thanks India Science Lab General Motors R&D Bangalore,
with which he is currently affiliated, for the support and permission to use
the resources towards the finalization of the material.

Thanks go to a large number students and collaborators who worked
with us. Specially we thank Basant Rajan, Tata Institute of Fundamental
Research who mainly worked and developed the multiclock Esterel. A spe-
cial thanks goes to K Kalyanasundaram who developed and tested examples
on Lustre and TTP, and Prahladavaradan Sampath, General Motors R&D
Bangalore for reading the entire draft and giving very useful comments that
improved the presentation of the monograph.

The authors would like to express their sincere appreciation for the pa-
tience and understanding shown by the publishers without which this mono-
graph would not have seen the light of the day.

ib'e

Contents

PART I: Real Time Systems — Background 1
1 Real Time System Characteristics 3
1.1 Real-time and Reactive Programs 4

2 Formal Program Development Methodologies 9
2.1 Requirement Specification 10
2.1.1 AnExample.o 12

2.2 System Specificationso o000 13

3 Characteristics of Real-Time Languages 17
3.1 Modelling Features of Real-Time Languages. 19

3.2 A Look at Classes of Real-Time Languages 22

4 Programming Characteristics of Reactive Systems 25
4.1 Execution of Reactive Programs 26

4.2 Perfect Synchrony Hypothesis 26

4.3 Multiform Notion of Time 27

4.4 Logical Concurrency and Broadcast Communication 27

4.5 Determinism and Causality 28
PART II: Synchronous Languages 29
5 ESTEREL Language: Structure 31
5.1 Top Level Structure 31
5.1.1 Signals and Events 32

5.1.2 Module Instantiation 33

5.2 ESTEREL Statements 34
5.2.1 Data Handling Statements 36

5.2.2 Reactive Statements 36

x1

xii

5.2.3 Derived Statements
5.3 Illustrations of ESTEREL Program Behaviour . . .
5.4 Causality Problems
5.5 A Historical Perspective

6 Program Development in ESTEREL

6.1 A Simulation Environment
6.2 Verification Environment

7 Programming Controllers in ESTEREL

7.1 Auto Controllers
7.1.1 A Very Simple Auto Controller
7.1.2 A Complex Controller
7.1.3 A Cruise Controller
7.1.4 A Train Controller
7.1.5 A Mine Pump Controller

8 Asynchronous Interaction in ESTEREL

9 Futurebus Arbitration Protocol: A Case Study

9.1 Arbitration Process

10 Semantics of ESTEREL

10.1 Semantic Structure
10.2 Transition Rules

10.2.1 Rules for Signal Statement
10.3 IMlustrative Examples
10.4 Discussions
10.5 Semantics of Esterel with exec

PART III: Other Synchronous Languages

11 Synchronous Language LUSTRE

11.1 An Overview of LUSTRE
11.2 Flows and Streams
11.3 Equations, Variables and Expressions
11.4 Program Structure

11.4.1 Illustrative Example

Contents

..... 41

67

71

..... 71
..... 72
..... 74

..... 97

Contents

11.5 Arrays in LUSTRE oot i oo
11.6 Further Examples
11.6.1 A Very Simple Auto Controller
11.6.2 A Complex Controller
11.6.3 A Cruise Controller
11.6.4 A Train Controller
11.6.5 A Mine Pump Controller

12 Modelling Time-Triggered Protocol (TTP) in LUSTRE
12.1 Time-Triggered Protocol
12.1.1 Clock Synchronization
12.1.2 Bus Guardian
12.2 Modelling TTP in LUSTRE

13 Synchronous Language ARGOS
13.1 ARGOS Constructs
13.2 Hlustrative Example
13.3 Discussions

PART IV: Verification of Synchronous Programs

14 Verification of ESTEREL Programs
14.1 Transition System Based Verificationy of
ESTEREL Programs
14.1.1 Detailed Discussion
14.2 ESTEREL Transition System
14.2.1 Abstraction and Hiding
14.2.2 Observation Equivalence Reduction
14.2.3 Context Filtering
14.3 Temporal Logic Based Verification
14.4 Observer-based Verification
14.5 First Order Logic Based Verification

15 Observer Based Verification of Simple
LUSTRE Programs

15.1 A Simple Auto Controller
15.2 A Complex Controller
15.3 A Cruise Controller
15.4 A Train Controller
15.5 A Mine Pump Controller

Contents

xiv
PART V: Integration of Synchrony and Asynchrony 151
16 Communicating Reactive Processes 151
16.1 An Overviewof CRP 151
16.2 Communicating Reactive Processes: Structure 153
16.2.1 Syntax of CRP 154
16.2.2 Realizing Watchdog Timers in CRP 155
16.3 Behavioural Semantics of CRP 156
16.4 An Ilustrative Example: Banker Teller Machine 157
16.5 Implementation of CRP 160
17 Semantics of Communicating Reactive Processes 165
17.1 A Brief Overview of CSP 165
17.2 Translation of CSPto CRP 166
17.3 Cooperation of CRP Nodes 168
17.4 Ready-Trace Semantics of CRP 168
17.5 Ready-Trace Semantics of CSP 168
17.5.1 Semantic Definition 170
17.5.2 Semantics of Parallel Composition 170
17.5.3 Semantics of ‘send’ Action 170
17.5.4 Semantics of ‘receive’ Action 171
17.5.5 Semantics of Assignment Statement 171
17.5.6 Semantics of Sequential Composition 171
17.5.7 Semantics of Guarded Selection 171
17.6 Extracting CSP Ready-trace Semantics from
CRP Semantics 172
17.6.1 Behavioural Traces of CRP Programs 172
17.7 Correctness of the Translation 174
17.8 Translation into MELJE Process Calculus 176
18 Communicating Reactive State Machines 181
18.1 CRSM Constructs 182
18.2 Semantics of CRSM 183
19 Multiclock ESTEREL 187
19.1 Need for a Multiclock Synchronous Paradigm 187
19.2 Informal Introduction 189
19.2.1 Latched Signals 191
19.2.2 Expressions 192

19.2.3 Multiclock ESTEREL Statements 193

Contents XV

19.2.4 Informal Development of Programs in

Multiclock ESTEREL 194

19.3 Formal Semantics 197

19.3.1 Specification of Clocks 197

194 Embedding CRP 212

19.5 Modelling a VHDL Subset 218

19.6 Discussion 219

20 Modelling Real-Time Systems in ESTEREL 221

20.1 Interpretation of a Global Clock in terms of exec 222
20.2 Modelling Real-Time Requirements

in ESTEREL 222

20.2.1 Deadline Specification 222

20.2.2 Periodic Activities 223

20.2.3 Guaranteed Activities 224

21 Putting it Together 231

Bibliography 235

Index 243

Part I: Real Time Systems: Background

Summary

In the next four sections, we shall provide (i) an overview of the general
characteristics of real-time systems and reactive systems, (ii) a general dis-
cussion on formal development methodologies for real-time systems, (iii)
characteristics of real-time languages and (iv) programming characteristics
of reactive systems and the synchrony hypothesis.

Chapter 1

Real Time System
Characteristics

Real-Time systems are designed to cater to many applications ranging from
simple home appliances and laboratory instruments to complex control sys-
tems for chemical and nuclear plants, flight guidance of aircrafts and ballistic
missiles. All these applications require a computational system (including
both the computer and software) interacting with physical equipments like
sensors and actuators. Such systems are often referred to as embedded sys-
tems.

An important feature of many of these systems is the ability to pro-
vide continual and timely response to unpredictable changes in the state
of the environment. Hence, these systems have relatively rigid performance
requirements. Further, these systems have to satisfy stringent fail-safe re-
liability requirements as failure in many of the applications will result in
economic, human or ecological catastrophes. For these reasons, these sys-
tems are called safety-critical or time-critical systems.

In general, the interface between a real-time system and its environment
tends to be complex, asynchronous, and distributed. This is due to the
fact that the environment of the system consists of a number of physical
entities that have autonomous behavior and that interact with the systems
asynchronously; it is probably the complexity of the environment that ne-
cessitates computer support in the first place. Such systems can be extraor-
dinarily hard to test. The complexity of the environment interface is one
obstacle, and the fact that these programs often cannot be tested in their
operational environments is another. It is not feasible to test flight-guidance
software by flying with it, nor to test ballistic-missile-defense software un-

3

4 Chapter 1. Real Time System Characteristics

der battle conditions. In summary, some of the important characteristics of
real-time systems are:

e The environment that a system interacts with, is highly nondetermin-
istic and often consists of asynchronous distributed units; there is no
way to anticipate in advance the precise order of different external
events.

e High speed external events may affect the flow of control in the system
easily.

e Responses to external events should be within strict bounded time
limits.

e They tend to be large, complex and extraordinarily hard to test.

e In some real time applications, the mission time is long and the system,
during its mission time should not only deal with ordinary situations
but also must be able to recover from some exceptional situations.

In view of the above characteristics, the design of real-time systems poses
serious challenges. There is a definite need for systematic methods and
methodologies for designing them. In the design of quality software, high
level programming languages and abstract models have a major role to play.
The focus of this monograph is on some of the high level programming
abstractions that have been found to be useful in designing provably correct
real-time programs.

1.1 Real-time and Reactive Programs

There are many dichotomies of programs such as determinism/non deter-
minism, synchrony/asynchrony, off-line/on-line, virtual time/ real-time, se-
quential /concurrent. However, depending on the way they interact with
their environment, programs can be classified into the following three broad
kinds[9]:

1. Transformational Programs: These programs compute outputs given
the input; programs interact with their environment once at the be-
ginning to get inputs and once at the end to give outputs. Compilers
are examples belonging to this category.

