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ABSTRACT

Combined cycle plants in cold climates experience low
circulating water inlet temperatures during winter months. Low
circulating water inlet temperatures combined with partial bypass
steam flow to the condenser results in extremely low condenser
pressures and high steam velocities. Improper design, control &
operation of desuperheating valve and improper drainage of bypass
header lines can lead to pockets of wet steam in the bypass steam.
High steam velocities combined with wet steam pockets of varying
quality can cause flow-induced vibration and tube failures. This paper
examines the performance of a condenser in bypass mode for varying
condenser pressures, bypass steam flow rates, support plate spacing,
and moisture pockets with varying quality. Actual and critical steam
velocities are calculated. Condenser operating points prone to flow-
induced vibration and associated tube failures are predicted.
Recommendations on safeguards to eliminate flow induced vibration
and resulting tube failures are discussed.

INTRODUCTION

The power industry has witnessed the commissioning of
numerous large combined cycle plants in the last five to ten years. Ina
combined cycle plant, the steam surface condenser has to condense the
turbine exhaust steam (normal operation) as well as the bypass steam
(steam turbine bypass operation). In bypass operation, with only the
gas turbines in operation, high-pressure steam from the HRSG is
attemperated in a pressure reducing/desuperheating valve and then
admitted into the condenser. The total bypass steam flow can be as
high as 150-200 % of the design turbine exhaust flow and the duration
of bypass operation can vary from a few hours to a few weeks.

Combined cycle plants are put into commercial operation in
the beginning of summer. Startup, testing, and debugging activities are
usually scheduled in the beginning of the year during winter months.
During “DLN” tuning (Dry Low NOX tuning), the gas turbines are
operated individually at partial loads leading to partial bypass steam
flow to the condenser. Often times the gas turbines are shown down
for hours for tuning purposes. In certain instances, circulating water
pumps and cooling tower fans are often operated at full capacity even
though gas turbines are shut down and bypass steam is not admitted
into the condenser. The concept “colder the water, lower the
condenser pressure” applies when the steam turbine is in operation.

This concept does not apply to bypass operation. In cold climates the
circulating water inlet temperatures can approach freezing
temperatures. Condenser pressures substantially lower than 1.0 inch
HgA have been encountered. Oversized evacuation packages, air tight
condenser, clean tubes, excessive safety margin in design can lead to a
further decrease in the condenser pressure. Low circulating
water inlet temperatures combined with partial bypass steam flow to
the condenser can lead to low condenser pressure and high steam
velocities, flow-induced vibration and tube failures.

Improper operation of the desuperheating valve can further
aggravate the problem. Improper design/operation of the
desuperheating valve, improper drainage of the steam header between
the desuperheating valve and the condenser can lead to pockets of
moisture with varying quality. Low condenser pressures and high
steam velocities combined with pockets of wet steam can cause severe
damage to condenser tubes.

Numerous combined cycle plants operating in northeast USA
have reported tube failures during winter startups. Tube failures have
been reported during DLN tuning, partial, and full bypass operation.
In certain instances, tube failures have been reported within hours of
bypass operation. The tube failures have disrupted the startup
schedule and delayed the commissioning of the combined cycle plant.

MECHANISM OF TUBE FAILURE

The tube bundles in a steam surface condenser are susceptible to
flow induced vibration from four different sources. These are fluid-
elastic instability, vortex shedding, turbulent buffeting, and acoustic
resonance. Fluid elastic instability, vortex shedding, and turbulent
buffeting are associated with large amplitude of vibration. Vortex
shedding, turbulent buffeting, except in rare cases, does not initiate
large tube vibration amplitudes in a steam surface condenser. Acoustic
resonance results in a loud acoustic noise. Acoustic resonance seldom
coincides with the tube vibration itself. As a result the effects of
vortex shedding, turbulent buffeting and acoustic resonance are not
considered.

With fluid-elastic excitation, the maximum tube displacement
increases as the fluid velocity is increased until the critical velocity is
reached. Increasing fluid velocity past the critical velocity causes an
exponential growth in the tube displacement and subsequent tube
failure. Numerous researchers [4-6] have presented formulations to
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calculate the critical velocity. Connor’s method & the most widely
accepted formulation to evaluate the critical cross flow velocity. In the
present analysis the Connor’s method will be adopted for calculating
the critical cross flow velocity.

NATURE OF ACTUAL TUBE FAILURE

Almost all of the reported tube failures have occurred during
start up bypass mode when the steam turbine was not in operation.
The tube failures were located randomly along the length and width of
the condenser. Tube failures were not clustered in one area. In almost
all of the cases, the failure resulted in a clean shear of tube at the center
of the unsupported span. On numerous occasions, a cluster of tubes
surrounding the failed tube were dented or damaged. The damage to
surrounding tubes is attributed to the “whirling effect” of the failed
tube.

A PRACTICAL EXAMPLE

The mechanism of tube failure is analyzed using a practical
example. It is assumed that the bypass headers and the steam dome
are designed such that the bypass steam is evenly distributed over the
entire tube bundle. The actual cross flow over the tube bundle is
dependent on tube layout, tube pitch, length and width of the shell. To
simplify the analysis the cross sectional area is assigned a fixed value.

The condenser pressure is dependent on circulating water
flow rate, inlet temperature, tube geometry, cleanliness factor, and a
number of other design and flow characteristics. To limit the number
of independent variables and simplify the analysis, the condenser
pressure is assumed to vary between 0.5 inches HgA to 3.5 inches
HgA. The support plate spacing is assumed to vary between 30 to 48
inches. The bypass steam flow is assumed to vary between 250,000
Ibs/hr to 1,500,000 Ibs/hr. The variables considered in the analysis are
as follows:

Dump steam flow, lbs/hr: 250,000 - 1,500,000
Inlet bypass steam enthalpy, Btw/lb: 1200

Flow area at the topmost tube, ft2: 100
Tube outer diameter, inches: 1.0

Tube thickness, inches: 0.028
Tube material: 304 SS
Support Plate spacing, inches: 30 to 48
Condenser Pressures examined,

inches HgA: 0.5t03.5
CALCULATIONS

Actual and critical cross flow velocities are calculated for a
non-homogeneous mixture of bypass steam containing pockets of wet
steam of varying quality. The “actual” steam velocity within the
condenser is calculated from the specified bypass steam flow rate,
enthalpy, condenser pressure, and assumed cross-sectional area. The
velocity of bypass steam is assumed to be uniform over the entire tube
bundle. The critical cross-flow velocity is calculated for the “wet
steam pocket” with 25%, 50%, 75%, and 100% quality. An additional
“superheated” case is considered wherein the bypass steam is dry and
does not contain any wet steam. The critical velocity is calculated
using the Connor’s method. The calculations for the critical cross flow

velocity are lengthy and therefore not reproduced in the present paper.
The calculations are presented in detail in reference 3 & 4.

The actual velocity, critical cross-flow velocity and the ratio
of actual/critical cross flow velocities are calculated for each “wet
steam pocket” quality for condensers pressures ranging from 0.5 to 3.5
inches HgA, unsupported tube spans ranging from 30 to 48 inches, and
bypass steam flow rate ranging from 250,000 lbs/hr to 1,500,000
lbs/hr. The ratios of Vactual/Vcritical are plotted as a function of
condenser pressure, steam flow rate, and unsupported tube span.

RESULTS

The actual cross flow velocity must be lower than the critical
cross-flow velocity. To account for uncertainties in empirical formulas,
calculations, assumptions, material properties, physical dimensions,
and steam flow conditions; it is recommended that the actual cross-
flow velocity should not exceed 50% of the critical cross-flow velocity.

A picture of failed tubes is included in Figure 1. The tube is
sheared at the center of the unsupported span between two support
plates. The failure occurred in bypass mode operation during a winter
startup.

Variation of Vactual/Vcritical with condenser pressure for
support plate spacing of 36 inch and flow rate of 250,000 Ibs/hr,
750,000 Ibs/hr, 1,000,000 lbs/hr and 1,500,000 lbs/hr are included in
Figures 2, 3, 4 & 5 respectively. Tube failure can be avoided if the
condenser is operated such that Vactual/Vcritical is less than 0.5. Tube
failures can be expected as the velocity ratio approaches or exceeds 1.0.

For bypass steam flow rate of 250,000 Ibs/hr the velocity
ratio remains below 0.5 for all operating cases. Low steam flow results
in a very low velocity as it is assumed that the steam is evenly
distributed over the entire cross-section of the tube bundle. For bypass
steam flow rate of 750,000 lbs/hr the velocity ratio exceeds 0.5 when
the condenser pressure starts to drop below 1.5 inches HgA. For
bypass steam flow rate of 1,000,000 Ibs/hr the velocity ratio exceeds
0.5 for condenser pressure below 2.0 inches HgA. For bypass steam
flow rate of 1,500,000 Ibs/hr the velocity ratio exceeds 0.5 for the
entire range of condenser pressures. The velocity ratio is lower than
0.5 for the 100% quality and superheated condition cases.

Figures 5 and 6 illustrate the variation of Vactual/Vcritical for
varying bypass steam for a support plate spacing of 36 inches and
condenser pressure of 1.0 and 2.0 inches HgA respectively. Higher
steam flow rate combined with lower quality of steam in moisture
pockets lead to higher velocity ratio. The velocity ratio increases with
decreasing condenser pressure.

The effect of support plate spacing on the velocity ratio for
bypass steam flow rate of 1,500,000 Ibs/hr for condenser pressure of
1.0 and 2.0 inches HgA is included in Figures 8 & 9. As expected,
velocity ratio increases with increasing support plate spacing. The
velocity ratio increases as the condenser pressure decreases.

RECOMMENDATIONS

Condenser tubes are susceptible damage from flow-induced
vibration at lower condenser pressures and from bypass steam
containing pockets of wet steam of varying quality. Maintaining the
condenser pressure in bypass mode equal to or above 2.0 inches HgA
can decrease the incidence of tube failures. Higher condenser pressures
can be achieved by increasing the circulating water inlet temperature
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(by varying the number of cooling tower fans in operation), reducing or
recirculating the circulating water flow. Precautions must be taken to
eliminate wet steam pockets in bypass steam. Performance of the
desuperheating valve during maximum and minimum flow rate cases,
the control logic, header lengths, and placement of temperature &
pressure sensors on the bypass header must be carefully examined to
ensure that wet steam is not admitted into the condenser. The bypass
header between the desuperheating valve and the steam surface
condenser must be drained using a drain pot/gage glass assembly to
ensure and confirm proper drainage.
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