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Preface

During the twelve years since this book first appeared, the success of FORTRAN as
a programming language has continued unabated. An enhanced definition of the
language, produced by the American National Standards Institute, has become
widely known as ANSI 77 FORTRAN or FORTRAN 77 (see ANSI X3.9, 1978).

FORTRAN 77 compilers are now becoming generally available from most of
the major computer manufacturers and interest in the language is increasing. It
seems an appropriate time, therefore, to revise the original text of my book in
order to describe the new facilities.

People interested in FORTRAN 77 fall into one of two categories — those
interested in learning it as a new language in its own right and those interested
in converting from FORTRAN 66. This very much affects the way in which it
is taught.

In order to cater for the second group, I have revised the text of my original
book to describe ANSI 66 FORTRAN with the ANSI 77 enhancements introduced
separately, as they arise naturally. I hope that by describing the two dialects side
by side, I have provided a text which will be useful to many programmers and
lecturers in both of the above categories. The two dialects can be distinguished
easily in the text by the fact that they are printed in different type founts. In
line with the trend in computing generally, I have introduced more examples
and exercises of use in non-numerical programming applications.

I owe a continuing debt of gratitude to Professor E. J. Burge, Head of the
Physics Department at Chelsea College, London, for the encouragement he gave
me during my early career, and for the confidence he always displayed during the
period when the original text was written. He suggested numerous improvements
to the text of the original edition, and has continued to give helpful advice on the
content of this second edition.

My thanks also go to Dr A. Howarth who, as an experienced lecturer in
FORTRAN at North Staffordshire Polytechnic, has made many useful comments
on the text, and to my colleague Dr P Kirby (of the Theoretical Physics
Division, Culham Laboratory) for reading and commenting on the text so
thoroughly, and for the many useful contributions he has made to programming
standards at Culham.

I wish to thank my husband, Dr M. Calderbank, of the Business
Development and Computer Division at Culham, not only for helping me with
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the text and the exercises, but also for giving me the constant support without
which this book would never have appeared.

My acknowledgements would not be complete, however, without thanking
Chapman and Hall for the vast amount of work they have had to put into the
production of both editions, and of course my employers (UKAEA, Culham
Laboratory) for giving their permission to write this book, and for providing
computer time on their PRIME 500 computers without which I would have
been unable to provide so many exercises and solutions.

Finally, I would like to point out that, after some deliberation, I decided to keep
in this edition the two complete examples from the original text. The first may be
found in Appendix Two and is a least-squares curve-fitting program which uses
the Gaussian Elimination Method (originally described in R. W. Hamming, Numerical
Methods for Scientists and Engineers, p. 360, McGraw-Hill, 1962). It is in ANSI
66 FORTRAN. The second may be found in Appendix Three and is a Kutta—
Merson numerical integration program (originally described in L. Fox, Numerical
Solution of Ordinary and Partial Differential Equations, p. 24, Pergamon Press,
1962). This has been translated into ANSI 77 FORTRAN.

I recognize that these examples will be beyond the comprehension of the
average reader and may well be too out-of-date to be of use to the professional
numerical analyst. I use them only as illustrations of complete FORTRAN
programs which should be of interest to beginners and experts alike.

Valerie J. Calderbank

Business Development and Computer Division
Culham Laboratory

1982
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Fundamentals of
FORTRAN

1.1 Introduction

The purpose of this book is to teach the reader to program a computer in one
particular language. It is not intended to discuss the way in which a modern
computer is constructed or operated. However, a certain minimum knowledge
of the structure of a computer system is required before any attempt can be
made to program it, and therefore a brief introduction is given here.

Computer architecture can vary greatly in detailed design but the basic
principle of most systems can be represented by the diagram in Fig. 1.1.
Information is presented to the computer via an input device and stored in the
computer’s central memory. The memory consists of binary digits or bits which
are grouped together into larger units called bytes (typically 8 bits) and words
(typically 16, 32, 48 or 64 bits). The position of a word or byte in memory is
known as its address.

Calculations are performed in the Arithmetic Unit which contains one or more
accumulators or high-speed working registers. The control unit controls and
coordinates the sequence of operations within the computer. It is able to access
and decode the instructions held in the memory and initiate the appropriate
action. The results of a computation are transferred to an output device. The
arithmetic unit, control unit, registers and central memory together form the central
processor unit (CPU). To this are connected input/output devices and other
cheaper (but slower) storage devices known as secondary store or backing store.
These devices are collectively known as peripherals.

A typical modern scientific computer installation will provide a variety of
input devices such as teletypes, visual display units (VDUs), paper-tape and
card readers: a variety of output devices such as lineprinters and graph plotters,
and a variety of secondary storage devices such as magnetic discs, drums and
tapes. During the last ten years, cards and paper tapes, as input media, have been
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Figure 1.1 A schematic diagram showing the flow of information through
a typical computer system.

superseded by on-line devices such as teletypes and VDUs which are connected
directly to the computer and enable the user to type information on the keyboard
into files on disc. From disc, the information may be transferred to central
memory when required. Similarly, output may also be to a disc file from where
it may be printed by a lineprinter or displayed on a VDU. Input and output are
often autonomous processes carried out in parallel with computation in the
CPU and place no load on it. ;

A computer is able to produce a solution to a particular problem only if it
is presented with a series of simple instructions that it is able to perform and which
will, when obeyed in a specific order, produce the desired result. This sequence of
instructions is referred to as a program, and it is the responsibility of the human
programmer to present the problem to the computer in this rigid form. Programs
are collectively termed computer software. The hardware of any particular
computer is designed to obey a limited number of basic instructions such as
addition, subtraction, multiplication, division and so on. Therefore a sophisticated
mathematical computation can be performed on a computer only if the
computation is capable of being broken down into a logical sequence of these
basic operations. Many numerical methods are concerned with the reduction of
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problems, such as integration, minimization, the solution of equations and so on,

to this simple numerical form. Any process described in this way is generally known
as an algorithm. It is the programmer’s first task, therefore, to produce a suitable
algorithm for a particular problem. A typical algorithm to find the sum of the
squares of the integer numbers 1 to 100 might read as follows:

Set the value of SUM equal to zero.
Set the value of [ equal to 1.

Start: If the value of I is greater than 100, end the process and print the value
of SUM.

Otherwise square I and add the result to SUM.
Add 1 to I and return to the line labelled Start to continue the process.

Alternatively (or in addition), the algorithm can be produced in a diagrammatic
form known as a Flow Chart. A flow chart for the above algorithm is shown in
Fig. 1.2. Note that certain conventions are generally followed in flow charts. All
commands (e.g. add 1 to the value of I) are placed in rectangular boxes. Questions
to be asked are placed in diamond-shaped boxes. These are generally referred to as
decision boxes, since a decision has to be made at this point as to whether the
answer to the question is yes or no. Thus there are always at least two ways out of
any decision box, one to a series of instructions to be performed if the answer is
yes, and one to another series if the answer is no. Input or output instructions
(e.g. print the value of SUM) are usually placed in rounded boxes. Arrows indicate
the flow of the logic from box to box.

So far the programmer has been concerned only with crystallizing ideas and
formulating the problem in a suitable way. Now the program must be produced
— that is, a sequence of instructions must be written in a language which the
computer can understand. Any computer is constructed in such a way that it can
fundamentally understand only one language — the machine language of that
computer. Since programming in this basic machine language is a tedious and
error-prone process, a multitude of so-called high-level languages have been designed
to ease the programmer’s task. A program written in one of these languages cannot
be understood directly by the computer, and therefore it must be translated from
the high-level language into the machine language of the computer. This task is
performed by a program resident in the computer and known as the compiler (or
translator). The compiler takes a source program in the high-evel language and
produces a logically equivalent object program in the machine code. This process
is known as compiling the program, and obeying the resulting sequence of machine
code instructions is known as executing (or running) the program. From this it can
be appreciated that any program written in a high-level language cannot be run on
a computer which does not have a compiler for the particular language or version
of that language.
 This book describes the grammatical rules for writing programs in one particular
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scientifically oriented high-level language — FORTRAN. The FORTRAN project
was started in the early 1950s and it produced a high-level language for scientific
use on IBM computers. It is very much a card-oriented language since it was
designed at a time when most programmers entered their programs and data on
punched cards. Since that time it has become one of the world’s most widely used
scientific languages and almost all computer manufacturers provide a compiler for
it. This in itself presents a problem for although the language is in widespread use,
there was for some time no universally recognized definition of it. The version of
FORTRAN recognized by one compiler could be quite different from that
recognized by another. To remedy this, the American National Standards Institute
(ANSI) produced a definition of FORTRAN in 1966 and all manufacturers were
encouraged to provide compilers which conformed to this standard. The result of
this would be an improvement in program portability,i.c.a FORTRAN program
written for one computer to the ANSI 66 standard should run with little or no
modification on any other computer with an ANSI FORTRAN compiler. The
FORTRAN compilers produced by many manufacturers provide enhancements

to the ANSI definition of the language but programmers are warned that the use
of such features should be avoided if possible since they may cause problems when
the program is moved to a new computer. It is for this reason that the main text
of this book describes ANSI 66 FORTRAN.

Since the 1966 definition, FORTRAN has been used for more and more
programming applications and several weaknesses in the language became
apparent. In 1977 the ANSI committee produced an upgrade to the definition
known as ANSI 77 FORTRAN. This is implemented now on a wide range of
machines and is becoming increasingly used. Additional sections have been added
to this book to describe the ANSI 77 enhancements to FORTRAN and these are
highlighted in the text. Complete beginners may see the additional FORTRAN 77
features as unnecessary complications to the language, so perhaps it should be
pointed out, at this stage, that the aims of the extensions are mainly to make it
easier to write correct programs by removing irritating restrictions in FORTRAN 66,
and by providing better building blocks plus extra features such as character
handling.

Throughout the text the term FORTRAN will be used to refer to both
languages. Features specific to the ANSI 77 definition will be referred to as either
ANSI 77 or FORTRAN 77. Note that, with a few important differences, ANSI 77
FORTRAN is a superset of ANSI 66 FORTRAN. This should allow earlier programs
to run with only minimal changes, if any.

1.2 Layout of FORTRAN programs

Historically, FORTRAN is a card-oriented language and this early influence is still
apparent in the language today. The statements of FORTRAN programs are typed
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on 80 character lines, one statement per line. Each character position on the line is
called a column; this derives from early nomenclature when FORTRAN statements
were typed on 80 column punched cards. Columns are numbered from left to right
starting with column 1.

Lines are divided into four distinct regions. FORTRAN statements may be
typed in columns 7 to 72 only, but may be positioned anywhere within that region.
In general, spaces or blanks are ignored in FORTRAN statements and may be used
to improve readability.

Any FORTRAN statement may be labelled with a numeric label of 1 to 5
decimal digits which may be positioned anywhere within columns 1 to 5 of the line.
This region is reserved for that purpose only.

Columns 73 to 80 of the line are ignored by the compiler and may be used for
any purpose. One common use for this region is to number the statements in order;
it was particularly important to do this in the heyday of punched cards when large
programs could be shuffled or dropped accidentally and would have to be
reassembled in correct sequence.

FORTRAN allows long statements, which will not fit on to one line to be
constructed by means of continuation lines. These are indicated by typing any
character (except space or zero) in column 6 of the line. The very first line of the
statement must contain a space or zero in column 6. Subsequent lines are often
identified as a continuation of the first line by typing 1, 2, 3, etc. in column 6.

The standard definition of FORTRAN allows up to 19 continuation lines
(although in practice some compilers may produce errors for less than this
number). Statements may be broken and continued at any point and do not
necessarily have to extend up to column 72 before they are continued. Columns
1 to 5 of a continuation line must be blank.

Comment lines may appear anywhere in a FORTRAN program and are totally
ignored by the compiler. They are indicated by the letter C in column 1 and columns
2 to 80 may be used for explanatory comment. FORTRAN 77 permits the use of
an asterisk in column 1 also. The liberal use of the comment facility improves
program readability and is to be encouraged (see Fig. 1.3). More hints on writing
good FORTRAN programs are given throughout the book and in the Conclusion.
Note that in a comment line, any character capable of representation in the
computer may be used but this may vary from one computer to another. Lines
which are completely blank from columns 1 to 72 (or 80) are also accepted as
valid comment lines by some compilers but are not standard.

Since FORTRAN is a language, like any other language it must have an alphabet
in which it can be written and typed. This consists of:

(1) The decimal digits O to 9

(2) The upper case letters A to Z
(3) The arithmetic operators + — s/
(4) Left and right parentheses ( )
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(5) Equals=

(6) Comma,and decimal point .

(7) Apostrophe ’ and colon :

(8) The currency symbol $ (sometimes £)
(9) Space or blank

Note that in this book the terms ‘space’ and ‘blank’ are used synonymously.

The decimal digits and letters together are known as the alphanumeric characters.
The apostrophe and colon are ANSI 77 additions. Note that although the currency
symbol forms part of the character set, no rules are given in the standard about how
it should be used.

Some versions of FORTRAN will permit other characters to be used and will
permit more than one statement per line. However, such practices are not to be
encouraged if programs are to be run with little modification on a variety of
machines. Note also that the use of the currency symbol can sometimes cause
portability problems.

The rules for the layout of lines apply only to FORTRAN statements in
programs. They do not apply to the layout of data for the program. As we shall
see later, this is under the control of the programmer who has all 80 columns
available for this purpose.

Figure 1.3 shows a typical FORTRAN program to find the roots of a quadratic
equation of the form:

ax? +bx +c=0
These are given by the expression

Lot +/(b* — 4ac)
2a

The statements of this program will be described in the following chapters. At
present it is sufficient to note the layout of the program.

In the remaining sections of this chapter and in the following two chapters, the
basic concepts of FORTRAN will be introduced so that the program example in
Fig. 1.3 will be comprehensible to the reader. This should enable similar simple
programs to be written, and exercises to do this will be provided at the end of
Chapters 2 and 3.

1.3 Data types

All computers work, in principle, by obeying the instructions of a program stored
at a particular address in memory. These instructions operate on data stored in
other locations in memory. Many different types of data may be stored in a
computer’s memory and each may require a different unit of store, e.g. a word,
several words, a bit or a byte.



8 A COURSE ONPROGRAMMING IN FORTRAN

C* EREERIE PP E I RPN REE T30 Jededededk bt ke de ke ek
c . %
C A FORTRAN PROGRAM TO FIND THE ROOTS OF A QUADRATIC EQUATION *
C *
Cheedelodeiet Slok lttod ek PR R PR R L R TR T IR R R R BT R RSP T TR T S
C
C RFAD THE CONTFFICIENTS OF THE RQUATTON
&
RTAD(5.10)A,8.C
e
C THZ NRXT STATEMENT PROTECTS AGAINST A POSSIBLE DIVISION BY
C ZERO LATTR ON. ¥XECUTION OF TIL PROGRAM IS TERMINATED IF A=0.
(8
IF(A.5Q.N.0)STOP
C
C OTIHERWIST CALCULATZ B SQUARED MINUS 4AC
(5
BAMAAC=B 24 , DXA%C
-
T THE NTXT STATEMENT CHFRCKS FOR IMAGINARY ROOTS
¢
TF(B2M4LAC.LT.0.0)GO TO 1
(o
C OTHTRWISS CALCULATE THF ROOTS.
c
B2MAAC=SQRT (B2M4AC)
A2=2.0%A
SOLN1=(-B +32M4AC) /A2
SOLN2=(-B~B2M4AC) /A2
o
C NOW PRINT THE RESULTS
C
WRITE(6,29)SOLN1, SOLN2
C
C AND TTRMINATE THE PROGRAM
C
STOP
C
C IF ROOTS ART COMPLEX THEN OUTPUT WARNING MESSAGE
e
1 WRITE(6,39)
C AND TESRMINATE THIT PROGRAM.
STOP
c
C THIL FORMAT STATEMENTS REQUIRED BY THE PROGRAM
C
10 FORMAT(3F10.5)
20 FORMAT(l4H THE ROOTS ARE,2F10.5)
30 FORMAT(23H THE ROOTS ARE COMPLEX.)
(0
C END OF PROGRAM
C

END

Figure 1.3 A FORTRAN program to find the roots of a quadratic equation.
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FORTRAN allows five basic data types — integer, real, double precision, complex
and logical. FORTRAN 77 has introduced an additional character type. A more
detailed discussion of types is given in Chapter 5 but for simplicity we shall
consider only the types real and integer at this stage.

As a program is obeyed it may change the contents of data storage locations.
Other locations hold a fixed value which must not change during program
execution. The latter is a program constant and the former a program variable.

1.4 Constants

Integer and real data types in FORTRAN are each assigned one numeric storage
location in memory (usually a word) but the bits within that location are used in
a different way for the two types.

In a FORTRAN program, an integer constant is a sequence of decimal digits
without a decimal point and may be preceded optionally by a + or — sign, e.g. 50,
—25 and +3 are all valid FORTRAN constants. Unsigned constants are taken to
be positive. This decimal number is converted internally to a binary representation
so that each bit in the word represents a power of 2 (where the rightmost bit is 20).
A few decimal numbers with the corresponding binary representations are:

5 101 (1x22+0x2"+1x20=5)
32 100000 (1x2°=32)
10 1010 (1x22+0x22+1x2" +0x29=10)

It follows from this that the maximum sized integer which can be held in a
computer is dependent on the word length of that computer and this varies from
one machine to the next. The leftmost bit of the word is reserved usually for the
sign bit which is 0 if the number is positive and 1 otherwise. Thus in a 16 bit word
machine, the maximum sized positive integer that may be stored is represented by
a leftmost bit of 0 and all other bits 1 (i.e. 32767). The maximum sized negative
number is represented by a leftmost bit of 1 and all other bits 0 (i.e. —32768).
Note that a word with all bits set to 1 usually represents —1.

The internal representation should not, however, concern the FORTRAN
programmer unduly. Decimal numbers are used throughout FORTRAN programs.
But note that integers are held exactly in the computer (up to the maximum
allowed value that is).

In FORTRAN, neither decimal point nor commas are permitted in integer
constants. Spaces within constants are allowed and are ignored by the compiler.
Leading zeros may be specified, e.g. 059 and 59 are both valid and have the same
value.

The following are all examples of valid integer constants:

237 —82 +1 000 0028 -0 +0



