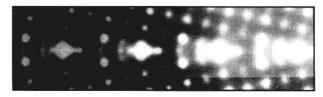


- From Grain Boundary Phenomena to Grain Boundary Quantum Structures

Edited by
Taketo Sakuma
Laurel M. Sheppard
Yuichi Ikuhara

Grain Boundary Engineering in Ceramics

---From Grain Boundary Phenomena to Grain Boundary Quantum Structures


Proceedings of the Grain Boundary Engineering in Ceramics—From Grain Boundary Phe omena & Grain Boundary Grailly in Section Japan Fine Ceramics Center Workshop, North E-1572033, in Nagoya, Japan.

Edited by

Taketo Sakuma University of Tokyo

Laurel M. Sheppard
Lash Publications International

Yuichi Ikuhara University of Tokyo

Published by
The American Ceramic Society
735 Ceramic Place
Westerville, Ohio 43081

Proceedings of the Grain Boundary Engineering in Ceramics—From Grain Boundary Phenomena to Grain Boundary Quantum Structures Japan Fine Ceramics Center Workshop, March 15–17, 2000, in Nagoya, Japan.

Copyright 2000, The American Ceramic Society. All rights reserved.

Statements of fact and opinion are the responsibility of the authors alone and do not imply an opinion on the part of the officers, staff, or members of The American Ceramic Society. The American Ceramic Society assumes no responsibility for the statements and opinions advanced by the contributors to its publications or by the speakers at its programs. Registered names and trademarks, etc., used in this publication, even without specific indication thereof, are not to be considered unprotected by the law.

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the publisher.

Authorization to photocopy for internal or personal use beyond the limits of Sections 107 and 108 of the U.S. Copyright Law is granted by the American Ceramic Society, provided that the appropriate fee is paid directly to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923 USA, www.copyright.com. Prior to photocopying items for educational classroom use, please contact Copyright Clearance Center, Inc.

This consent does not extend to copying items for general distribution or for advertising or promotional purposes or to republishing items in whole or in part in any work in any format.

Please direct republication or special copying permission requests to Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923 USA 978-750-8400; www.copyright.com.

Cover photo is courtesy of the Japan Fine Ceramic Center.

Library of Congress Cataloging-in-Publication Data A CIP record for this book is available from the Library of Congress.

For information on ordering titles published by The American Ceramic Society, or to request a publications catalog, please call 614-794-5890.

Printed in the United States of America.

4 3 2 1-03 02 01 00

ISSN 1042-1122 ISBN 1-57498-115-3

Grain Boundary Engineering in Ceramics

---From Grain Boundary Phenomena to Grain Boundary Quantum Structures

Related titles published by The American Ceramic Society:

The Magic of Ceramics
By David W. Richerson
©2000. ISBN 1-57498-050-5

Advances in Ceramic Matrix Composites V (Ceramic Transactions Volume 103) Edited by Narottam P. Bansal, J.P. Singh, and Ersan Ustundag ©2000, ISBN 1-57498-089-0

Ceramic Innovations in the 20th Century Edited by John B. Wachtman Jr. ©1999, ISBN 1-57498-093-9

Ceramic Material Systems with Composite Structures: Towards Optimum Interface Control (Ceramic Transactions Volume 99)
Edited by Nobuo Takeda, Laurel M. Sheppard, Jun-ichi Kon ©1998, ISBN 1-57498-065-3

Innovative Processing and Synthesis of Advanced Ceramics, Glasses, and Composites (Ceramic Transactions Volume 85)
Edited by Narottam P. Bansal and J.P. Singh
©1998, ISBN 1-57498-030-0

Mass and Charge Transport in Ceramics (Ceramic Transactions Volume 71) Edited by Kunihito Koumoto, Laurel M. Sheppard, and Hideaki Matsubara ©1996, ISBN 1-57498-018-1

Materials Processing and Design (Ceramic Transactions Volume 44) Edited by Koichi Niihara, Kozo Ishizaki, and Mitsui Isotani ©1994, ISBN 0-944904-78-5

For information on ordering titles published by The American Ceramic Society, or to request a publications catalog, please contact our Customer Service Department at 614-794-5890 (phone), 614-794-5892 (fax),<customersrvc@acers.org> (e-mail), or write to Customer Service Department, 735 Ceramic Place, Westerville, OH 43081, USA.

Visit our on-line book catalog at <www.ceramics.org>.

This volume contains the selected papers presented at the 10th international workshop sponsored by the Japan Fine Ceramics Center, "Grain Boundary Engineering in Ceramics—From Grain Boundary Phenomena to Grain Boundary Quantum Structures"—which was held on March 15–17, 2000, in Nagoya, Japan. This workshop is held every two years on timely topics of ceramic materials. Past workshops discussed mass and charge transport, as well as composite structures.

Since most advanced ceramics are fabricated by sintering raw powders, grain boundaries play a key role in sintering behavior and affect various properties. Therefore, grain boundary-related subjects were often discussed in past JFCC workshops, as well as at this meeting. However, this meeting discussed grain boundaries in ceramics not only from conventional approaches, but also from novel approaches, including microscopic analysis of local atomic bonding or even quantum structures of grain boundaries. This type of microscopic analysis will enable us to design new ceramic materials in the near future. Recent data has shown that various properties in ceramics can be controlled by the presence of small dopant ions in grain boundaries, which supports this prediction.

Fortunately, a number of top-level scientists came to join this meeting from around the world, making the workshop an exciting event with many lively discussions. The high-quality papers compiled in this proceedings are evidence that leading experts attended. The editors and the Japan Fine Ceramics Center hope that this volume will be a guide to designing new ceramic materials in the future.

This workshop was subsidized by the Japan Keirin Association with promotion funds from KEIRIN RACE.

Taketo Sakuma Laurel M. Sheppard Yuichi Ikuhara

KEIRIN OO

JFCC International Workshop on Fine Ceramics 2000 Organizing Committee

Board Chairman

Masaaki Ohashi (JFCC)

Board Sub-Chairman

Emeritus Prof. Hiroaki Yanagida (JFCC)

Chairman

Prof. Taketo Sakuma (University of Tokyo)

Members

Tsukasa Hirayama (JFCC)

Yuichi Ikuhara (JFCC/University of Tokyo)

Jun-ichi Kon (JFCC)

Michiko Kusunoki (JFCC)

Hideaki Matsubara (JFCC)

Yasusi Matsuo (NGK/NTK)

Hiroaki Sakai (NGK)

Isao Tanaka (Kyoto University)

Yoshio Ukyo (Toyota Central R&D Lab, Inc.)

Yoshiyuki Yasutomi (JFCC)

Secretariat:

Mikio Ishikawa (JFCC)

Mari Yamada (JFCC)

T. Sakuma

L.M. Sheppard

Y. Ikuhara

J.M. Albuquerque

P.F. Becher

R.M. Cannon

C.B. Carter

Y.M. Chiang

W.Y. Ching

S.D. de la Torre

F. Dogan

Y. Enomoto

F. Ernst

C.A.J. Fisher

K. Hayashi

T. Hirayama

N. Hirosaki

Y. Inagaki

K. Kaneko

H. Kawasaki

V.V. Kiseliev

S. Kitaoka

M. Kohyama

M. Kusunoki

J. Li

X.L. Ma

H. Matsubara

K. Matsunaga

M. Mitomo

N. Mizutani

R. Monzen

H. Murotani

F. Oba

S. Ogata

C.W. Park

M. Rühle

T. Saito

S. Sakaguchi

J. Shibata

N. Shibata

D.J. Srolovitz

Y. Sugawara

A.P. Sutton

T. Suzuki

Y. Suzuki

Y. Takigawa

I. Tanaka

K. Tanaka

S. Tanaka

H. Tsubakino

K. Tsurata

Y. Ukyo

Y. Waku

Tadao Watanabe

T. Watanabe

K. Watari

D.S. Wilkinson

R. Xie

T. Yamamoto

J. Yang

Y. Yasutomi

D.Y. Yoon

H. Yoshida

M. Yoshiya

T. Yukiko

G.-D. Zhan

J. Zhu

Prefacex
General, Theory, and Simulation
Grain Boundaries in Metals: Current Understanding and Some Future Directions
Recent Progresses in the Electronic Structure Theory of Complex Ceramics
Tight-Binding Molecular Dynamics of Ceramics Nanocrystals Using Parallel PC Cluster
First-Principles Study of Ceramic Interfaces: SiC Grain Boundaries and SiC/Metal Interfaces
Molecular Dynamics Simulations of Surfaces and Grain Boundaries in Yttria-Stabilized Zirconia
Atomistic Computer Simulations of Amorphous Silicon Nitride Based Ceramics
Ab Initio Calculations of 3C-SiC(III)/Ti Polar Interfaces
Molecular Dynamics Simulation of Fracture Toughness of Silicon Nitride Single Crystal
Variable-Charge Molecular Dynamics of Aggregation of TiO ₂ Nanocrystals

Diffusion and Transformation

Anisotropic Grain Boundary Properties for Modeling Grain Growth Phenomena
Computational Modeling of Ceramic Microstructure by MC and MD Methods
Rheology of Grain Boundary Network Systems
Microstructural Development in $\alpha\text{-Al}_2\text{O}_3$
Grain Boundary Faceting Transition and Abnormal Grain Growth in Oxides
Effects of Different Additives on Densification and $\alpha-\beta$ Phase Transformation in Si_3N_4 Ceramics
Precise Shape Function for Interparticle Necks Formed during Solid-State Sintering
Diffusional Relaxation around 9R Cu Martensite Particles in an Fe Matrix
Isothermal T-to-M Transformation Nucleated at Grain Boundaries in Zirconia-Yttria Ceramics
Interface Characterization of $\alpha-\beta$ Phase Transformation in Si ₃ N ₄ by Transmission Electron Microscopy
AEM Study of Interface Structures Related to Cubic-to- Tetragonal Phase Transition in Zirconia Ceramics
Electronic Ceramics
Possible Center for Polar Cluster in Lead Magnesium Niobate Pb(Mg _{1/3} Nb _{2/3})O ₃

Segregation of BaZrO $_3$ in Melt Textured Yba $_2$ Cu $_3$ O $_{7-x}$ 201 F. Dogan, J.D. Reding, and J. Awano
Microstructure Control in BaTiO ₃ Sinters by a Small Amount of Dopants
Grain Boundaries in Strontium Titanate
Electronic Structure Calculation of Symmetric Tilt Boundaries in ZnO
Atomic and Electronic Structure Analysis of Coincidence Boundaries in B-SiC
Evaluation of Optically Active Cr Ion in the Cr:Al ₂ O ₃ Ceramics by SNOM
Electronic Conduction through a Grain Boundary in BaTiO ₃ Positive Temperature Coefficient Thermistors
Interference of Electron Waves and its Application of Visualize Electromagnetic Microfields
Electron Transport across Boundaries in Nb-Doped SrTiO ₃ Bicrystals
Structural Ceramics
High-Temperature Properties and Grain Boundary Structure in Silicon Nitride Based Ceramics
The Influence of Grain Boundaries and Interphase Boundaries on the Creep Response of Silicon Nitride
An Approach to Grain Boundary Design Using Ceramic Bicrystals
Mechanical Properties and Thermal Stability of Oxide Eutectic Composites at High Temperatures

Micromechanics of Viscous Slip along Ceramic Grain Boundaries
Superplasticity and Microstructural Evolution of Yba ₂ Cu ₃ O _{7-x} /25vol % Ag Composites
Role of Grain Boundary Segregation on High-Temperature Creep Resistance in Polycrystalline Al ₂ O ₃
Anisotropic Thermal Conduction Mechanism of β -Si $_3$ N $_4$ Grains and Ceramics
Dislocations in Al ₂ O ₃ -20wt%ZrO ₂ (3Y) Ceramics
Enhanced Fracture Resistance of Highly Anisotropicized Porous Silicon Nitride
Processing and Grain Boundary Structure of 3Y-TZP/BaFe ₁₂ O ₁₉ and 3Y-TZP/NaAl ₁₁ O ₁₇ Composites
Atomic Structures and Properties of Systematic [0001] Tilt Grain Boundaries in Alumina
Crystalline Orientation Analysis around Stable Cracks in MgO
Visco-elastic Analysis of Internal Friction on Engineering Ceramics
TEM Studies of Reaction-Bonded $\mathrm{Si_3N_4/SiC}$ Composites 391 K. Kaneko and N. Kondo
Intergranular Film
The Effects of Intergranular Films on the Mechanical Behavior of Self-Reinforced Ceramics
Glass in and on Ceramic Oxides

Stabilization of Surface Films in Ceramics
Adsorption and Wetting Mechanisms at Ceramic Grain Boundaries
Intergranular Glassy Films in ${\rm Si_3N_4\text{-}SiO_2}$ Ceramics: Morphology, Chemistry, Atomic Structure and Energetics 445 I. Tanaka
Molecular Dynamics Study of Intergranular Glassy Film in High-Purity Si ₃ N ₄ -SiO ₂ Ceramics
Microstructural Aspects of Superplastic Deformation in a Fine-Grained Silicon Nitride Doped with a Silica-Containing Additive
TEM Characterization of Grain Boundaries in Superplastic Silicon Nitride Ceramics
Hereto Interface and Others
nereto interiace and others
Preparation and Structure of Epitaxial CeO ₂ /YSZ/Si Buffer Layer
Preparation and Structure of Epitaxial CeO ₂ /YSZ/Si Buffer Layer
Preparation and Structure of Epitaxial CeO ₂ /YSZ/Si Buffer Layer
Preparation and Structure of Epitaxial CeO ₂ /YSZ/Si Buffer Layer
Preparation and Structure of Epitaxial CeO ₂ /YSZ/Si Buffer Layer

Characteristics of Silicon Carbide Thin Films Prepared by Using Pulsed Nd:YAG Laser Deposition Method
Effects of Crystallographic Orientation of Silver Substrate on Crystallinity of YBCO (Y123) Film
Interfacial Structures of YbBazCu ₃ O ₇ Superconducting Films Deposited on SrTiO ₃ (001) Substrates by the Dipping-Pyrolysis Process
Transmission Electron Microscopic Studies of AIN Films Formed on Off-Oriented R-Plane of Sapphire Substrates by MOCVD
Aligned Carbon Nanotube Films Self-Organized by Surface Decomposition of SiC
Structure of FCC-Ti/6H-SiC Interface Grown by Electron Beam Evaporation
Microstructures of the AIN/TiN/MgO (001) Interfaces
Effect of Sintering Atmospheres on Creep Behavior of Dense Al ₂ O ₃ Ceramics
Solitons in the Vicinity of a Martensitic Phase Transition
Index