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Preface

This book combines two mathematical branches: dynamical systems and
radial basis functions. It is mainly written for mathematicians with experience
in at least one of these two areas. For dynamical systems we provide a method
to construct a Lyapunov function and to determine the basin of attraction of
an equilibrium. For radial basis functions we give an important application
for the approximation of solutions of linear partial differential equations. The
book includes a summary of the basic facts of dynamical systems and radial
basis functions which are needed in this book. It is, however, no introduction
textbook of either area; the reader is encouraged to follow the references for
a deeper study of the area.

The study of differential equations is motivated from numerous applica-
tions in physics, chemistry, economics, biology, etc. We focus on autonomous
differential equations & = f(x), * € R" which define a dynamical system.
The simplest solutions x(t) of such an equation are equilibria, i.e. solutions
x(t) = x¢ which remain constant. An important and non-trivial task is the
determination of their basin of attraction.

The determination of the basin of attraction is achieved through sublevel
sets of a Lyapunov function, i.e. a function with negative orbital derivative.
The orbital derivative V'(x) of a function V() is the derivative along solutions
of the differential equation.

In this book we present a method to construct Lyapunov functions for
an equilibrium. We start from a theorem which ensures the existence of a
Lyapunov function 7" which satisfies the equation 7"(x) = —¢, where ¢ > 0
is a given constant. This equation is a linear first-order partial differential
equation. The main goal of this book is to approximate the solution 7" of this
partial differential equation using radial basis functions. Then the approxi-
mation itself is a Lyapunov function, and thus can be used to determine the
basin of attraction.

Since the function 7' is not defined at xy, we also study a second class
of Lyapunov functions V which are defined and smooth at xy. They satisfy
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the equation V'(x) = —p(x), where p(x) is a given function with certain
properties, in particular p(xg) = 0.

For the approximation we use radial basis functions, a powerful meshless
approximation method. Given a grid in R", the method uses an ansatz for
the approximation, such that at each grid point the linear partial differential
equation is satisfied. For the other points we derive an error estimate in terms
of the grid density.

My Habilitation thesis [21] and the lecture “Basins of Attraction of
Dynamical Systems and Algorithms for their Determination™ which T held
in the winter term 2003/2004 at the University of Technology Miinchen were
the foundations for this book. I would like to thank J. Scheurle for his support
and for many valuable comments. For their support and interest in my work
I further wish to thank P. Kloeden, R. Schaback, and H. Wendland. Special
thanks to A. Iske who introduced me to radial basis functions and to F. Rupp
for his support for the exercise classes to my lecture. Finally, I would like to
thank my wife Nicole for her understanding and encouragement during the
time I wrote this book.

December 2006 Peter Gliesl
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Introduction

1.1 An Example: Chemostat

Let us illustrate our method by applying it to an example. Consider the follow-
ing situation: a vessel is filled with a liquid containing a nutrient and bacteria,
the respective concentrations at time t are given by x(¢) and y(t). This family
of models is called chemostat, cf. [56]. More generally, a chemostat can also
serve as a model for population dynamics: here, () denotes the amount of
the prey and y(f) the amount of the predator, e.g. rabbits and foxes.

The vessel is filled with the nutrient at constant rate 1 and the mixture
leaves the vessel at the same rate. Thus, the volume in the vessel remains
constant. Finally, the bacteria y consumes the nutrient @ (or the predator
eats the prey), i.e. y increases while & decreases.

The situation is thus described by the following scheme for the temporal
rates of change of the concentrations x and y:

e 1 (nutrient): rate of change =input — washout — consumption

e y (bacteria): rate of change = — washout 4 consumption
The rates of change lead to the following system of ordinary differential
equations, where the dot denotes the temporal derivative: "= %

F=1-z—a(r)y
{fl =—y+a(xr)y. (1.1)

The higher the concentration of bacteria y is, the more consumption takes
place. The dependency of the consumption term on the nutrient x is modelled
FLTT i.e. a high concentra-
tion of the nutrient has an inhibitory effect. The solution of such a system of
differential equations is unique, if the initial concentrations of nutrient and
bacteria, x(0) and y(0), respectively, are known at time t = 0.

Imagine the right-hand side of the differential equation (1.1) as a vector

field f(z.y) (1_;;' ol

by the non-monotone uptake function a(x) =

). At each point (i, y) the arrows indicate the
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Fig. 1.1. Left: the vector field f(x,y) (arrows with normalized length) and the three
equilibria oy (unstable, grey), xy and x, (asymptotically stable, black). Right: the
three equilibria and the local Lyapunov function v: the sign of the orbital derivative
v'(x,y) (grey) and the level sets v(r.y) = 0.025.0.02,0.015.0.1 (black) which are
ellipses. The sublevel sets are subsets of the basin of attraction A(xg).

infinitesimal rate of change, to which the solution is tangential, cf. Figure 1.1,
left. The norm of the vectors describes the velocity of solutions; note that in
Figure 1.1, left. the arrows have normalized length one.

Negative concentrations have no meaning in this model. This is reflected in
the equations: solutions starting in the set S = {(x,y) | ¥,y > 0} do not leave
this set in the future. because the vector field at the boundary of S points
inwards, cf. Figure 1.1, left. Thus, the set S is called positively invariant.

Points (z,y) where the velocity of the vector filed is zero, i.e. f(xr,y) = 0,
are called equilibria: starting at these points. one stays there for all positive
times. In our example we have the three equilibria o = (‘;H‘—" —’+TVC’) r =

(HT‘/F’ E%ﬁ) and 1o = (1,0), cf. Figure 1.1. If the initial concentrations are
equal to one of these equilibria, then the concentrations keep being the same.
What happens, if the initial concentrations are adjacent to these equilibrium-
concentrations?

If all adjacent concentrations approach the equilibrium-concentration for
t — oo, then the equilibrium is called asymptotically stable. If they tend away
from the equilibrium-concentration, then the equilibrium is called unstable.
In the example. x| is unstable (grey point in Figure 1.1), while ry and xy are
asymptotically stable (black points in Figure 1.1). The stability of equilibria
can often be checked by linearization, i.e. by studying the Jacobian matrix
Df(ry). We know that solutions with initial concentrations near the asymp-
totically stable equilibrium . tend to . But what does “near” mean?”
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The set of all initial conditions such that solutions tend to the equilibrium
g for t — oo is called the basin of attraction A(xq) of xy. We are interested in
the determination of the basin of attraction. In our example A(x) describes
the set of initial concentrations so that the concentrations of nutrient and
bacteria tend to xq, which implies that the concentration of the bacteria tends
to a constant positive value. If, however, our initial concentrations are in
A(x2), then solutions tend to xs, i.e. the bacteria will eventually die out.

The determination of the basin of attraction is achieved by a Lyapunov
function. A Lyapunov function is a scalar-valued function which decreases
along solutions of the differential equation. This can be verified by checking
that the orbital derivative, i.e. the derivative along solutions, is negative. One
can imagine the Lyapunov function to be a height function, such that solu-
tions move downwards, cf. Figure 1.2. The Lyapunov function enables us to
determine a subset A of the basin of attraction by its sublevel sets. These
sublevel sets are also positively invariant, i.c. solutions do not leave them in
positive time.

1 02

Fig. 1.2. Left: a plot of the local Lyapunov function v. Note that v is a quadratic
form. Right: A plot of the calculated Lyapunov function w.

Unfortunately, there is no general construction method for Lyapunov func-
tions. Locally, i.e. in a neighborhood of the equilibrium, a local Lyapunov
function can be calculated using the linecarization of the vector field f. The
orbital derivative of this local Lyapunov function, however, is only negative in
a small neighborhood of the origin in general. Figure 1.2, left, shows the local

Lyapunov function v(x) = (& — )" (r — xq). for the deter-

Al b=

N— b=

I
V51

mination of v cf. Section 2.2.2. In Figure 1.1, right. we sce that the orbital
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Fig. 1.3. Left: the 153 grid points (black +) for the approximation using radial basis
functions and the sign of the orbital derivative v’(a
lated Lyapunov function using radial basis functions. Right: the sign of the orbital
derivative v'(x,y) (grey), level sets v(r,y) = —1.7, —1.75, —1.8, =1.85, —1.9, —1.95,
where v is the calculated Lyapunov function using radial basis functions (black), and
the sublevel set v(x,y) < 0.025 of the local Lyapunov function (thin black ellipse).

y) (grey), where v is the calcu-

This sublevel set covers the points where v'(x,y) > 0. Hence, sublevel sets of the
calculated Lyapunov function are subsets of the basin of attraction A(ry).

derivative v’ is negative near x (grey) and thus sublevel sets of v (black) are
subsets of the basin of attraction.

In this book we will present a method to construct a Lyapunov function in
order to determine larger subsets of the basin of attraction. Figure 1.2, right,
shows such a calculated Lyapunov function v. In Figure 1.3, right, we see
the sign of the orbital derivative v'(2) and several sublevel sets of v. Figure
1.4, left, compares the largest sublevel sets of the local and the calculated
Lyapunov function.

The idea of the method evolves from a particular Lyapunov function. Al-
though the explicit construction of a Lyapunov function is difficult, there are
theorems available which prove their existence. These converse theorems use
the solution of the differential equation to construct a Lyapunov function and
since the solutions are not known in general, these methods do not serve to
explicitly calculate a Lyapunov function. However, they play an important
role for our method.

We study Lyapunov functions fulfilling equations for their orbital deriva-

tives, e.g. the Lyapunov function V satisfying V'(x) = —||x — x¢||*. Here, V’
denotes the orbital derivative, which is given by V/(x) = Zle /,(1)%(1)

Hence, V is the solution of a first-order partial differential equation. We
approximate the solution V using radial basis functions and obtain the
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Fig. 1.4. Left: comparison of two subsets of the basin of attraction obtained by
the local Lyapunov function (thin black) and by the calculated Lyapunov function
(black). Right: the vector field and subsets of the basin of attraction obtained by
the calculated Lyapunov function. The subsets are positively invariant - the vector
field points inwards.

approximation v. Error estimates for the orbital derivative ensure v'(x) < 0
and, thus, the approximation v is a Lyapunov function.

For the radial basis function approximation, we fix a radial basis function
U(x) and a grid of scattered points Xy = {x,...,xn}. In this book we
choose the Wendland function family ¢y ;. to define the radial basis function by
U(x) = P p(cl|z|]). We use a certain ansatz for the approximating function v
and choose the coefficients such that v satisfies the partial differential equation
v (zp) = =5y — xy|? for all points x; € Xy of the grid.

Figure 1.3, left, shows the grid points (black +) that were used for the
calculation of v. The sign of v is negative at the grid points because of the
ansatz and also between them due to the error estimate. However, v'(x) is

positive near the equilibrium ¢, but this area is covered by the local Lyapunov
basin, cf. Figure 1.3, right. Thus, sublevel sets of v are subsets of the basin
of attraction. Figure 1.4, left, shows that the calculated Lyapunov function v
determines a larger subset of the basin of attraction than the local Lyapunov
function v. All these sublevel sets are subsets of the basin of attraction and,
moreover, they are positively invariant, i.e. the vector field at the level sets
points inwards, cf. Figure 1.4, right.

Hence, concerning our chemostat example, we have determined subsets of
the basin of attraction of xq, cf. Figure 1.4. If the initial concentrations in
the vessel lie in such a set, then solutions tend to the equilibrium z, and the
bacteria do not die out.

For a similar example, cf. [24], where we also consider a chemostat example,
but with a different non-monotone uptake function a(xr).



6 1 Introduction
1.2 Lyapunov Functions and Radial Basis Functions

In this section we review the literature on Lyapunov functions and radial basis
functions

Lyapunov Functions

The literature on Lyapunov functions is very large; for an overview cf.
Hahn [34]. In 1893, Lyapunov [48] introduced his direct or second method.
where he sought to obtain results concerning the stability of an equilibrium
without knowing the solution of the differential equation, but by only us-
ing the differential equation itself. He used what later was called Lyapunov
functions and proved that a strict Lyapunov function implies the asvmptotic
stability of the equilibrium. Barbasin and Krasovskii [6] showed that the basin
of attraction is the whole phase space if the Lyapunov function is radially un-
bounded. Hahn describes how a Lyapunov function can be used to obtain a
subset of the basin of attraction through sublevel sets. cf. [35] pp. 108/109
and 156/157.

Converse theorems which guarantee the existence of such a Lyapunov
function under certain conditions have been given by many authors, for an
overview cf. [35] or [58]. The first main converse theorem for asymptotic sta-
bility was given by Massera [50] in 1949 and it was improved by many authors
in several directions. However, all the existence theorems offer no method to
explicitly construct Lyapunov functions.

Krasovskii writes in 1959: “One could hope that a method for proving the
existence of a Lyapunov function might carry with it a constructive method
for obtaining this function. This hope has not been realized™, [46], pp. 11/12.
He suggests [46], p. 11, to start from a given system. find a simpler system
which approximates the original one and for which one can show stability.
and then to prove that the corresponding property also holds for the original
systemn.

For linear systems one can construct a quadratic Lyapunov function of the
form v(r) = (r — ro)" B(r — 1) with a symmetric. positive definite matrix
B, where r( denotes the equilibrium, cf. e.g. [33]. In [34], pp. 29/30. Hahn de-
scribes, starting from a nonlinear system, how to use the quadratic Lyapunov
function of the linearized system as a Lyapunov function for the nonlinear sys-
tem. He also discusses the search for a sublevel set inside the region v’(r) < 0.
which is a subset of the basin of attraction.

Many approaches consider special Lyapunov functions like quadratic, poly-
nomial. piecewise linear, piecewise quadratic or polvhedral ones, which are
special piecewise linear functions. Often these methods can only be applied
to special differential equations.

Piccewise linear functions are particularly appropriate for the implemen-
tation on computers since they only depend on a finite number of values.
Julian [42] approximated the differential equation by a piccewise linear right-
hand side and constructed a piccewise lincar Lyapunov function using linear
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programming (linear optimization). Hafstein (formerly Marinossén), cf. [49] or
[32], improved this ansatz and constructed a piecewise linear Lyapunov func-
tion for the original nonlinear system also using linear programming. More-
over, he included an error analysis in his ansatz. On the other hand he could
not guarantee that the subsets which he determines with his method cover
the whole basin of attraction. In some of his examples the calculated sub-
set is even smaller than the one obtained by the Lyapunov function for the
linearized system with a sharper estimate.

A different method deals with the Zubov equation and computes a solution
of this partial differential equation. Since the solution of the Zubov equation
determines the whole basin of attraction, one can cover each compact subset
of the basin of attraction with an approximate solution. For computational
aspects, cf. e.g. Genesio et al. [19]. In a similar approach to Zubov’s method,
Vannelli & Vidyasagar [59] use a rational function as Lyapunov function can-
didate and present an algorithm to obtain a maximal Lyapunov function in
the case that f is analytic.

In Camilli et al. [12], Zubov’s method was extended to control problems
in order to determine the robust domain of attraction. The corresponding
generalized Zubov equation is a Hamilton-Jacobi-Bellmann equation. This
equation has a viscosity solution which can be approximated using standard
techniques after regularization at the equilibrium, e.g. one can use piecewise
affine approximating functions and adaptive grid techniques, cf. Griine [30] or
Camilli et al. [12]. The method works also for non-smooth f since the solution
is not necessarily smooth either. The error estimate here is given in terms of
[ve(x) — 0. ()], where v, denotes the regularized Lyapunov function and o, its
approximation, and not in terms of the orbital derivative.

In this book we present a new method to construct Lyapunov functions. We
start from a converse theorem proving the existence of a Lyapunov function 7'
which satisfies the equation T77(x) = —¢, where ¢ > 0 is a given constant. This
equation is a linear first-order partial differential equation due to the formula
for the orbital derivative:

At L (12)

()1,
=0

The main goal of this book is to approximate the solution 7" of (1.2) by a
function t using radial basis functions. It turns out that ¢ itself is a Lyapunov
function, i.e. t'(r) is negative, and thus can be used to determine the basin
of attraction. The approximation error will be estimated in terms of |7"(x) —
t'(z)] < t. Hence, t'(x) < T"(x) + ¢ = —c¢ + ¢ < 0 if the error ¢ < ¢ is small
enough.

However, the function 7" is not defined at xy. Hence, we consider a second
class of Lyapunov functions V' which are defined and smooth at xy. They
satisfy the equation V/(x) = —p(x), where p(x) is a given function with certain
properties, in particular p(x¢) = 0, and we often use p(z) = ||l — xo|*. The
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equation V'(x) = —p(r) is a modified Zubov equation, cf. [24]. In the following
we denote by @ one of these Lyapunov function of type Q = T or Q = V. For
the approximation of ) we use radial basis functions.

Radial Basis Functions

Radial basis functions are a powerful tool to solve partial differential equa-
tions. For an overview cf. [63], [11], [10], or [52], for a tutorial cf. [40]. The
main advantage of this method is that it is meshless, i.e. no triangulation
of the space R" is needed. Other methods, e.g. finite element methods, first
generate a triangulation of the space, use functions on each part of the trian-
gulation, e.g. affine functions as in some examples discussed above, and then
patch them together obtaining a global function. The resulting function is not
very smooth and the method is not very effective in higher space dimensions.
Moreover, the interpolation problem stated by radial basis functions is always
uniquely solvable. Radial basis functions give smooth approximations, but at
the same time require smooth functions that are approximated. In our appli-
cations, as we will see, the freedom of choosing the grid in an almost arbitrary
way will be very advantageous.

Let us explain the approximation with radial basis functions. Denote by D
the linear operator of the orbital derivative, i.e. DQ(x) = Q'(xr). We use the
symmetric ansatz leading to a symmetric interpolation matrix 4. One defines
agrid Xy = {r,...,rx} C R". The reconstruction (approximation) ¢ of the
function @ is obtained by the ansatz q(x) = Z,’:/:, BV, (x— 'U)qu.n fag)
with coefficients 3, € R. The function ¥ is the radial basis function. In this
book we use ¥ (x) = vy x(c|lx||) where ¢ is a Wendland function. Wendland
functions are positive definite functions (and not only conditionally positive

definite) and have compact support. The coeflicients [ are determined by
the claim that ¢'(r;) = Q'(x;) holds for all grid points j = 1,....] N. This
is equivalent to a system of linear equations A3 = a where the interpolation
matrix A and the right-hand side vector «v are determined by the grid and the
values Q'(x;). The interpolation matrix A is a symmetric (N x N) matrix.
where N is the number of grid points. We show that A is positive definite and
thus the linear equation has a unique solution /3. Provided that () is smooth
enough, one obtains an error estimate on |Q'(x) — ¢’(.r)| depending on the
density of the grid.

While the interpolation of function values has been studied in detail since
the 1970s, the interpolation via the values of a linear operator and thus the
solutions of PDEs has only been considered since the 1990s. The values of such
linear operators are also called Hermite-Birkhoff data. They have been stud-
ied, e.g. by Iske [38], Wu [67], Franke & Schaback [17] and [18] and Wendland
[63]. Franke & Schaback approximated the solution of a Cauchy problem in
partial differential equations, cf. also [54]. This results in a mixed problem,
combining different linear operators. cf. [17] and [18]. Their error estimates
used the fact that the linear operator is translation invariant. The partial
differential equations they studied thus have constant coefficients. Our linear



