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Preface

On behalf of the Program Committee, it is our pleasure to present the proceed-
ings of the 10th Symposium on Recent Advances in Intrusion Detection (RAID
2007), which took place in Queensland, Australia, September 5-7, 2007. As in
every year since 1998, the symposium brought together leading researchers and
practitioners from academia, government, and industry to discuss intrusion de-
tection research and practice.

This year, the RAID Program Committee received 101 paper submissions
from all over the world. All submissions were carefully reviewed by at least
three members of the Program Committee and judged on the basis of scientific
novelty, importance to the field, and technical quality. The final selection took
place at the Program Committee meeting held in Oakland, USA, May 22-23,
2007. Sixteen full papers and one short paper were selected for presentation
and publication in the conference proceedings, placing RAID among the most
competitive conferences in the area of computer security.

A successful symposium is the result of the joint effort of many people. In
particular, we would like to thank all the authors who submitted papers, whether
accepted or not. We also thank the Program Committee members and additional
reviewers for their hard work in evaluating submissions. In addition, we want to
thank the General Chair, George Mohay, for handling the conference arrange-
ments, Rei Safavi-Naini for publicizing the conference, Andrew Clark for putting
together the conference proceedings, and Ming-Yuh Huang for finding sponsor
support.

Finally, we extend our thanks to Northwest Security Institute, SAP, and
CERT at the Software Engineering Institute, Carnegie Mellon University for
their sponsorship and support.

September 2007 Christopher Kruegel
Richard Lippmann
Andrew Clark
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Exploiting Execution Context
for the Detection of Anomalous System Calls

Darren Mutz, William Robertson, Giovanni Vigna, and Richard Kemmerer

Computer Security Group
Department of Computer Science
University of California, Santa Barbara
{dhm,wkr,vigna,kemm}@cs.ucsb.edu

Abstract. Attacks against privileged applications can be detected by
analyzing the stream of system calls issued during process execution.
In the last few years, several approaches have been proposed to detect
anomalous system calls. These approaches are mostly based on modeling
acceptable system call sequences. Unfortunately, the techniques proposed
so far are either vulnerable to certain evasion attacks or are too expensive
to be practical. This paper presents a novel approach to the analysis of
system calls that uses a composition of dynamic analysis and learning
techniques to characterize anomalous system call invocations in terms
of both the invocation context and the parameters passed to the system
calls. Our technique provides a more precise detection model with respect
to solutions proposed previously, and, in addition, it is able to detect
data modification attacks, which cannot be detected using only system
call sequence analysis.

Keywords: Intrusion Detection, System Call Argument Analysis, Exe-
cution Context.

1 Introduction

A recent thrust of intrusion detection research has considered model-based de-
tection of attacks at the application level. Model-based systems operate by com-
paring the observed behavior of an application to models of normal behavior,
which may be derived automatically via static analysis [8,23] or learned by ana-
lyzing the run-time behavior of applications [3,5,12,18,15]. In each case, attacks
are detected when observed behavior diverges in some respect from the normal
behavior captured by the model. In contrast to misuse-based approaches, where
the analysis identifies attacks against applications using patterns of known ma-
licious actions, model-based schemes have the advantage of being able to detect
novel attacks, since attacks are not explicitly represented by the system. We
note that this advantage typically comes at the cost of performance, precision,
and explanatory capability, three properties that misuse-based approaches often
achieve very well.

Most model-based intrusion detection systems monitor the sequence of sys-
tem calls issued by an application, possibly taking into account some execution
state. For example, the system described in [3] monitors pairs of system calls

C. Kruegel, R. Lippmann, and A. Clark (Eds.): RAID 2007, LNCS 4637, pp. 1-20, 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 D. Mutz et al.

void write_user_data(void)

1

2i

3 FILE xfp;

4 char user_filename[256];

5 char user_data[256];

6

7 gets(user_filename);

8

9 if (privileged_file(user_filename)) {
10 fprintf (stderr, "Illegal filename. Exiting.\n");
11 exit (1);

12

13 else {

14 gets (user_data); // overflow into user_filename
15

16 fp = fopen(user_filename, "w");

17

18 if (fp) {

19 fprintf (fp, "%s", user_data);

20 fclose (fp);

21 }

22 }

23}

Fig. 1. Sample data modification attack

and records the application’s stack configuration (that is, part of the history
of function invocations). During the detection phase, the system checks if the
observed pairs of system calls (and their associated stack configuration) match
pairs recorded during the learning period. The systems described in [8] and [23]
check call sequences against automata-based models derived from the applica-
tion’s source code or binary representation, and identify sequences that could
not have been generated by the model.

Some of the shortcomings of sequence-based approaches were discussed in [2],
where the problems of incomplete sensitivity and incomplete sets of events were
introduced. Incomplete sensitivity affects models derived from static analysis.
Due to the limitations of static analysis techniques, these models may accept
impossible sequences of system calls (for example because branch predicates are
not considered).

The problem of incomplete sets of events is more general, and it affects all
approaches based on system call sequences. This problem stems from the fact
that, in these systems, the manifestation of an attack must be characterized in
terms of anomalies in the order in which system calls are executed. Changes in
the ordering of system call invocations occur, for example, because foreign code
is injected into the application (such as through a buffer overflow) or because
the order in which instructions are executed is modified. Therefore, by modeling
system call sequences, these approaches implicitly restrict themselves to only
detecting attacks that modify the execution order as expressed by the appli-
cation’s code or by the execution histories observed during a training period.
Unfortunately, an attacker can successfully compromise an application’s goals
by modifying the application’s data without introducing anomalous paths in the
application’s execution.

Consider, for example, the procedure write_user_data in Figure 1. Here, an
overflow of the variable user_data at line 14 allows an attacker to overwrite the
value contained in user_filename, which the application assumes was checked
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by the procedure invoked at line 9. Therefore, the attacker can leverage the
overflow to append data of her choice to any file the application has access to.
Note that the execution of this data modification attack does not affect the type
or ordering of the system calls issued by the application.

To detect data modification attacks, models must include some representa-
tion of valid or normal program state. For example, prior work in [11] and [12]
uses learning models to characterize “normal” system call argument values and
to demonstrate that changes to program state as a result of an attack often
manifest themselves as changes to the argument values of system calls. The as-
sumption underlying this approach is that the goal of the attacker is to leverage
the privileges of an application to change some security-relevant state in the un-
derlying system (e.g., write chosen values to a file, execute a specific application,
or change the permissions of a security-critical file). This type of activity may
be readily observed as suspicious system call argument values.

One limitation of the argument modeling approach in [11], [12], and [15] is that
models of normal argument values are built for each system call. That is, one set of
models is created for open, another set for execve, and so on. As a result, a model
captures the full range of argument values observed during all phases of the exe-
cution of an application. A better approach would be to train the models in a way
that is specific to individual phases of a program’s execution. For example, the
arguments used during a program’s initialization phase are likely to differ from
those used during a production phase or termination phase. This can be achieved
by differentiating program behavior using the calling context of a procedure — that
is, the configuration of the application’s call stack when a procedure is invoked.
Similar techniques have been explored in the programming languages literature.
Examples include improving profiling by considering a procedure’s calling con-
text [1], analyzing pointer variables more accurately [9], and improving lifetime
predictions of dynamically allocated memory [16]. A common observation in these
approaches is that the calling context of a procedure is often a powerful predictor
of how the procedure and its data interact.

In this paper, we first propose and evaluate a metric for determining to what
extent argument values are unique to a particular call stack for a given appli-
cation. Our study, presented in Section 2, shows that this is predominantly the
case, indicating that the argument modeling approach of [12] can be made more
precise if models are built for each calling context in which a system call is issued
by an application. Armed with this knowledge, we then introduce and evaluate a
model-based detection system that builds separate argument models for each call
stack in which an application issues a system call. Our experiments demonstrate
that the trained models effectively generalize from the training data, performing
well during a subsequent detection period.

This paper makes the following primary contributions:

— It analyzes the relationship between system call arguments and different
calling contexts, and it introduces a novel metric to quantify the degree to
which argument values exhibit uniqueness across contexts.

— It demonstrates that the application’s call stack can be leveraged to add
context to the argument values that appear at the system call interface. It
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also demonstrates that the increased sensitivity of context-specific argument
models results in better detection performance.
— It defines a technique to detect data modification attacks, which are not
detected by previously proposed approaches based on system call sequences.
— It presents an extensive real-world evaluation encompassing over 44 million
system call invocations collected over 64 days from 10 hosts.

The remainder of the paper is structured as follows. In Section 2 we introduce
and apply a metric to characterize the degree to which system call argument
values are unique to calling contexts in which system calls are issued. Then, in
Section 3, we present our detection approach, which builds argument models that
are specific to each calling context. Section 4 reports the results of evaluating the
system empirically. Section 5 covers related work on system call-based anomaly
detection. Finally, Section 6 draws conclusions and outlines future work.

2 System Call Argument and Calling Context Analysis

The effectiveness of system call analysis that includes call stack information is
directly related to the number of contexts in which a given argument value asso-
ciated with the invocations of a particular system call occurs. More specifically, if
argument values appear in many contexts, essentially randomly, context-specific
learning models are likely to offer no benefit. Furthermore, if each observed ar-
gument value appears (possibly multiple times) in only one context, we would
expect system call argument analysis that includes call stack information to
outperform context-insensitive models. In this section, we propose a metric to
express the degree of context-uniqueness of argument values. We then use this
metric to determine which applications are likely to be amenable to system call
analysis that takes into account stack-specific behavior.

Before introducing our context-uniqueness metric, we need to define some
notation. Let S = {s1, s2, ...} be the set of monitored system calls, and let A% =
(A", ..., A%) be the vector of formal arguments for system call s;. Consistent
with [6], we define the calling context of a system call invocation as the sequence
of return addresses C = (ry,...,7;) stored on the application’s call stack at the
time the system call invocation occurs. Each invocation s;; of s; has a concrete
vector of values for A% defined as a®9 = (a}”,...,an’), and two argument
vectors a®¥ and a®i’ are considered distinct if any of their subvalues alsij and
als“' differ.

We are interested in the set of argument vectors appearing in the invocation
of a system call in a particular context. For this, we introduce the notion of
an argument set. An argument set for a system call s; in a context C is the
set of all argument vectors a®7 observed for the chosen system call when it is
issued in the calling context C'. This is denoted by AS(C, s;). The argument set
for s; across the entire application (i.e., ignoring the calling context) is denoted
by AS(*,s;). We observe that if the set AS(x,s;) is partitioned by the subsets
{AS(C,si),AS(C4, s;), ...}, then each recorded argument vector a® occurs in
only one calling context.
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One potential route in the development of this metric would be to adapt clus-
ter quality measures from the machine learning literature. Unfortunately, com-
puting the distance between two argument vectors a* and a®9’ is problematic.
For example, integer arguments that exhibit numeric similarity are often dissim-
ilar in their semantic meaning. This occurs in cases where an integer argument is
the logical OR of a collection of boolean flags. Computing string similarity also
presents difficulties. For example, two filesystem paths may have large common
substrings or a small Hamming distance, but correspond to files that have a
very different meaning to the users of the system. For these reasons, we build
our metric using argument vector equality only.

With this in mind, we would like to determine the number of contexts where
each distinct argument vector is used. To measure this we define the actual
partitioning value AP(s;), which is the sum over all recorded concrete argument
vectors of the number of argument sets where each a® appears during the period
of monitoring. That is,

K L
AP(si) =YY [{a*} N AS(Cpm, s:) | (1)

j=1m=1

where K is the number of distinct argument vector values recorded, and L is the
number of distinct stack configurations observed during the monitoring period.

For our context-uniqueness metric, we would like to compare the actual par-
titioning value to both the optimal partitioning and the worst case partitioning
values. For the optimal case, each argument vector should appear in as few con-
texts as possible. There are two cases to consider. In the case where the number
of distinct argument vectors is greater or equal to the number of calling con-
texts (K > L), each argument value appears in only one context in the optimal
partition of AS(x,s;). For the case when K < L, some argument vectors must
appear in more than one context!. The optimal partitioning, in this case, is for
each concrete argument vector to appear in L/K argument sets. Both cases can
be expressed by specifying the number of argument sets where each argument
vector is to appear as max(L/K,1).

We can now define the optimal partitioning value and the worst case parti-
tioning value. Since there are K distinct argument vector values, the optimal
partitioning value OP(s;) is defined as:

OP(s;) = K * max(L/K,1) = maz(L, K) (2)

To define the worst case, we need to know how many instances of each of the K
distinct argument vectors a® € AS(x,s;) were recorded during the monitoring
period. We define the counter cnt,si; as the number of times that a partic-
ular argument vector a®’ occurs in the recorded invocations. The worst case
partitioning is determined by distributing each of the K argument vectors in
AS(%,s;) over as many contexts as possible. Although a7 can appear a maxi-
mum of cnt,=i; times, there are only L distinct contexts. Therefore, a® appears

L If each distinct value appeared in only one context, then there would be contexts
with no argument vectors.



