Christopher Kruegel |
Richard Lippmann
Andrew Clark (Eds.)

Recent Advances in
Intrusion Detection

10th International Symposium, RAID 2007
Gold Coast, Australia, September 2007
Proceedings

LNCS 4637

@ Springer

@ Springe

4] Christopher Kruegel Richard Lippmann
'/ Andrew Clark (Eds.)

Recent Advances 1n
Intrusion Detection

10th International Symposium, RAID 2007
Gold Coast, Australia, September 5-7, 2007
Proceedings

il 1T

E2007003374

Volume Editors

Christopher Kruegel

Secure Systems Lab

Technical University of Vienna
1040 Vienna, Austria

E-mail: chris@seclab.tuwien.ac.at

Richard Lippmann

Lincoln Laboratory

Massachusetts Institute of Technology
Lexington, MA 02420-9108, USA
E-mail: lippmann @1l.mit.edu

Andrew Clark

Information Security Institute
Queensland University of Technology
Brisbane, QLD 4001, Australia
E-mail: a.clark @qut.edu.au

Library of Congress Control Number: 2007932747

CR Subject Classification (1998): K.6.5, K.4,E.3,C.2,D.4.6
LNCS Sublibrary: SL 4 — Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-74319-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74319-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12110704 06/3180 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4637

Lecture Notes in Computer Science

For information about Vols. 1-4556

please contact your bookseller or Springer

Vol. 4697: L. Choi, Y. Paek, S. Cho (Eds.), Advances in
Computer Systems Architecture. XIII, 400 pages. 2007.

Vol. 4682: D.-S. Huang, L. Heutte, M. Loog (Eds.),
Advanced Intelligent Computing Theories and Applica-
tions. XX VII, 1373 pages. 2007. (Sublibrary LNAI).

Vol. 4681: D.-S. Huang, L. Heutte, M. Loog (Eds.),
Advanced Intelligent Computing Theories and Applica-
tions. XX VI, 1379 pages. 2007.

Vol. 4673: W.G. Kropatsch, M. Kampel, A. Hanbury
(Eds.), Computer Analysis of Images and Patterns. XX,
1006 pages. 2007.

Vol. 4671: V. Malyshkin (Ed.), Parallel Computing Tech-
nologies. XIV, 635 pages. 2007.

Vol. 4660: S. Dzeroski, J. Todorovski (Eds.), Computa-
tional Discovery of Scientific Knowledge. X, 327 pages.
2007. (Sublibrary LNAI).

Vol. 4651: F. Azevedo, P. Barahona, F. Fages, F. Rossi
(Eds.), Recent Advances in Constraints. VIII, 185 pages.
2007. (Sublibrary LNAI).

Vol. 4647: R. Martin, M. Sabin, J. Winkler (Eds.), Math-
ematics of Surfaces XII. IX, 509 pages. 2007.

Vol. 4645: R. Giancarlo, S. Hannenhalli (Eds.), Algo-
rithms in Bioinformatics. X111, 432 pages. 2007. (Subli-
brary LNBI).

Vol. 4643: M.-F. Sagot, M.E.M.T. Walter (Eds.), Ad-

vances in Bioinformatics and Computational Biology.
XII, 177 pages. 2007. (Sublibrary LNBI).

Vol. 4639: E. Csuhaj-Varj’u, Z. Esik (Eds.), Fundamen-
tals of Computation Theory. XIV, 508 pages. 2007.

Vol. 4637: C. Kruegel, R. Lippmann, A. Clark (Eds.),
Recent Advances in Intrusion Detection. XII, 337 pages.
2007.

Vol. 4635: B. Kokinov, D.C. Richardson, T.R. Roth-
Berghofer, L. Vieu (Eds.), Modeling and Using Context.
X1V, 574 pages. 2007. (Sublibrary LNAI).

Vol. 4634: H.R. Nielson, G. Filé (Eds.), Static Analysis.
X1, 469 pages. 2007.

Vol. 4633: M. Kamel, A. Campilho (Eds.), Image Anal-
ysis and Recognition. XII, 1312 pages. 2007.

Vol. 4632: R. Alhajj, H. Gao, X. Li, J. Li, O.R. Zaiane
(Eds.), Advanced Data Mining and Applications. XV,
634 pages. 2007. (Sublibrary LNAI).

Vol. 4628: L.N. de Castro, F.J. Von Zuben, H. Knidel
(Eds.), Artificial Immune Systems. XII, 438 pages. 2007.
Vol. 4627: M. Charikar, K. Jansen, O. Reingold,
J.D.P. Rolim (Eds.), Approximation, Randomization,
and Combinatorial Optimization. XII, 626 pages. 2007.

Vol. 4626: R.O. Weber, M.M. Richter (Eds.), Case-Based
Reasoning Research and Development. XIII, 534 pages.
2007. (Sublibrary LNAI).

Vol. 4624: T. Mossakowski, U. Montanari, M. Haveraaen
(Eds.), Algebra and Coalgebra in Computer Science. X1,
463 pages. 2007.

Vol. 4622: A. Menezes (Ed.), Advances in Cryptology -
CRYPTO 2007. XIV, 631 pages. 2007.

Vol. 4619: F. Dehne, J.-R. Sack, N. Zeh (Eds.), Algo-
rithms and Data Structures. XVI, 662 pages. 2007.

Vol. 4618: S.G. Akl, C.S. Calude, M.J. Dinneen, G.
Rozenberg, H.T. Wareham (Eds.), Unconventional Com-
putation. X, 243 pages. 2007.

Vol. 4617: V. Torra, Y. Narukawa, Y. Yoshida (Eds.),
Modeling Decisions for Artificial Intelligence. XII, 502
pages. 2007. (Sublibrary LNAI).

Vol. 4616: A. Dress, Y. Xu, B. Zhu (Eds.), Combinatorial
Optimization and Applications. XI, 390 pages. 2007.

Vol. 4615: R. de Lemos, C. Gacek, A. Romanovsky
(Eds.), Architecting Dependable Systems IV. XIV, 435
pages. 2007.

Vol. 4613: EP. Preparata, Q. Fang (Eds.), Frontiers in
Algorithmics. XI, 348 pages. 2007.

Vol. 4612: 1. Miguel, W. Ruml (Eds.), Abstraction, Re-
formulation, and Approximation. XI, 418 pages. 2007.
(Sublibrary LNAI).

Vol. 4611: J. Indulska, J. Ma, L.T. Yang, T. Ungerer,
J. Cao (Eds.), Ubiquitous Intelligence and Computing.
XXIII, 1257 pages. 2007.

Vol. 4610: B. Xiao, L.T. Yang, J. Ma, C. Muller-
Schloer, Y. Hua (Eds.), Autonomic and Trusted Com-
puting. XVIII, 571 pages. 2007.

Vol. 4609: E. Ernst (Ed.), ECOOP 2007 - Object-
Oriented Programming. XIII, 625 pages. 2007.
Vol. 4608: H.W. Schmidt, I. Crnkovic, G.T. Heineman,

J.A. Stafford (Eds.), Component-Based Software Engi-
neering. XII, 283 pages. 2007.

Vol. 4607: L. Baresi, P. Fraternali, G.-J. Houben (Eds.),
Web Engineering. XVI, 576 pages. 2007.

Vol. 4606: A. Pras, M. van Sinderen (Eds.), Dependable

and Adaptable Networks and Services. XIV, 149 pages.
2007.

Vol. 4605: D. Papadias, D. Zhang, G. Kollios (Eds.),
Advances in Spatial and Temporal Databases. X, 479
pages. 2007.

Vol. 4604: U. Priss, S. Polovina, R. Hill (Eds.), Con-

ceptual Structures: Knowledge Architectures for Smart
Applications. XII, 514 pages. 2007. (Sublibrary LNAI).

Vol. 4603: F. Pfenning (Ed.), Automated Deduction —
CADE-21. XII, 522 pages. 2007. (Sublibrary LNAI).

Vol. 4602: S. Barker, G.-J. Ahn (Eds.), Data and Appli-
cations Security XXI. X, 291 pages. 2007.

Vol. 4600: H. Comon-Lundh, C. Kirchner, H. Kirch-
ner (Eds.), Rewriting, Computation and Proof. XVI, 273
pages. 2007.

Vol. 4599: S. Vassiliadis, M. Berekovic, T.D. Himildinen
(Eds.), Embedded Computer Systems: Architectures,
Modeling, and Simulation. XVIII, 466 pages. 2007.

Vol. 4598: G. Lin (Ed.), Computing and Combinatorics.
XII, 570 pages. 2007.

Vol. 4597: P. Perner (Ed.), Advances in Data Mining. XI,
353 pages. 2007. (Sublibrary LNAI).

Vol. 4596: L. Arge, C. Cachin, T. Jurdziniski, A. Tarlecki
(Eds.), Automata, Languages and Programming. XVII,
953 pages. 2007.

Vol. 4595: D. Bosnacki, S. Edelkamp (Eds.), Model
Checking Software. X, 285 pages. 2007.
Vol. 4594: R. Bellazzi, A. Abu-Hanna, J. Hunter (Eds.),

Artificial Intelligence in Medicine. XVI, 509 pages.
2007. (Sublibrary LNAI).

Vol. 4592: Z. Kedad, N. Lammari, E. Métais, F. Meziane,
Y. Rezgui (Eds.), Natural Language Processing and In-
formation Systems. XIV, 442 pages. 2007.

Vol. 4591: J. Davies, J. Gibbons (Eds.), Integrated For-
mal Methods. IX, 660 pages. 2007.

Vol. 4590: W. Damm, H. Hermanns (Eds.), Computer
Aided Verification. XV, 562 pages. 2007.

Vol. 4589: J. Miinch, P. Abrahamsson (Eds.), Product-
Focused Software Process Improvement. XII, 414 pages.
2007.

Vol. 4588: T. Harju, J. Karhumiki, A. Lepisto (Eds.),
Developments in Language Theory. X1, 423 pages. 2007.
Vol. 4587: R. Cooper, J. Kennedy (Eds.), Data Manage-
ment. XIII, 259 pages. 2007.

Vol. 4586: J. Pieprzyk, H. Ghodosi, E. Dawson (Eds.),
Information Security and Privacy. XIV, 476 pages. 2007.
Vol. 4585: M. Kryszkiewicz, J.F. Peters, H. Rybinski,
A. Skowron (Eds.), Rough Sets and Intelligent Systems
Paradigms. XIX, 836 pages. 2007. (Sublibrary LNAI).
Vol. 4584: N. Karssemeijer, B. Lelieveldt (Eds.), Infor-
mation Processing in Medical Imaging. XX, 777 pages.
2007.

Vol. 4583: S.R. Della Rocca (Ed.), Typed Lambda Cal-
culi and Applications. X, 397 pages. 2007.

Vol.4582:J. Lopez, P. Samarati, J.L. Ferrer (Eds.), Public
Key Infrastructure. XI, 375 pages. 2007.

Vol. 4581: A. Petrenko, M. Veanes, J. Tretmans, W.
Grieskamp (Eds.), Testing of Software and Communi-
cating Systems. XII, 379 pages. 2007.

Vol. 4580: B. Ma, K. Zhang (Eds.), Combinatorial Pat-
tern Matching. XII, 366 pages. 2007.

Vol. 4579: B. M. Hiammerli, R. Sommer (Eds.), Detec-
tion of Intrusions and Malware, and Vulnerability As-
sessment. X, 251 pages. 2007.

Vol. 4578: F. Masulli, S. Mitra, G. Pasi (Eds.), Appli-
cations of Fuzzy Sets Theory. XVIII, 693 pages. 2007.
(Sublibrary LNAI).

Vol. 4577: N. Sebe, Y. Liu, Y.-t. Zhuang, T.S. Huang
(Eds.), Multimedia Content Analysis and Mining. XIII,
513 pages. 2007.

Vol. 4576: D. Leivant, R. de Queiroz (Eds.), Logic,
Language, Information and Computation. X, 363 pages.
2007.

Vol. 4575: T. Takagi, T. Okamoto, E. Okamoto, T.
Okamoto (Eds.), Pairing-Based Cryptography — Pairing
2007. XI, 408 pages. 2007.

Vol. 4574: J. Derrick, J. Vain (Eds.), Formal Techniques
for Networked and Distributed Systems — FORTE 2007.
X1, 375 pages. 2007.

Vol. 4573: M. Kauers, M. Kerber, R. Miner, W. Wind-
steiger (Eds.), Towards Mechanized Mathematical As-
sistants. XIII, 407 pages. 2007. (Sublibrary LNAI).

Vol. 4572: E. Stajano, C. Meadows, S. Capkun, T. Moore
(Eds.), Security and Privacy in Ad-hoc and Sensor Net-
works. X, 247 pages. 2007.

Vol. 4571: P. Perner (Ed.), Machine Learning and Data
Mining in Pattern Recognition. XIV, 913 pages. 2007.
(Sublibrary LNAI).

Vol. 4570: H.G. Okuno, M. Ali (Eds.), New Trends in
Applied Artificial Intelligence. XXI, 1194 pages. 2007.
(Sublibrary LNAI).

Vol. 4569: A. Butz, B. Fisher, A. Kriiger, P. Olivier, S.
Owada (Eds.), Smart Graphics. IX, 237 pages. 2007.

Vol. 4568: T. Ishida, S. R. Fussell, P. T. J. M. Vossen
(Eds.), Intercultural Collaboration. XIII, 395 pages.
2007.

Vol. 4566: M.J. Dainoff (Ed.), Ergonomics and Health
Aspects of Work with Computers. XVIII, 390 pages.
2007.

Vol. 4565: D.D. Schmorrow, L.M. Reeves (Eds.), Foun-
dations of Augmented Cognition. XIX, 450 pages. 2007.
(Sublibrary LNAI).

Vol. 4564: D. Schuler (Ed.), Online Communities and
Social Computing. XVII, 520 pages. 2007.

Vol. 4563: R. Shumaker (Ed.), Virtual Reality. XXII, 762
pages. 2007.

Vol. 4562: D. Harris (Ed.), Engineering Psychology and
Cognitive Ergonomics. XXIII, 879 pages. 2007. (Subli-
brary LNAI).

Vol. 4561: V.G. Duffy (Ed.), Digital Human Modeling.
XXIII, 1068 pages. 2007.

Vol. 4560: N. Aykin (Ed.), Usability and International-
ization, Part II. XVIII, 576 pages. 2007.

Vol. 4559: N. Aykin (Ed.), Usability and International-
ization, Part I. XVIII, 661 pages. 2007.

Vol. 4558: M.J. Smith, G. Salvendy (Eds.), Human Inter-
face and the Management of Information, Part IT. XXIII,
1162 pages. 2007.

Vol. 4557: M.J. Smith, G. Salvendy (Eds.), Human Inter-
face and the Management of Information, Part I. XXII,
1030 pages. 2007.

Férb 0o %

Preface

On behalf of the Program Committee, it is our pleasure to present the proceed-
ings of the 10th Symposium on Recent Advances in Intrusion Detection (RAID
2007), which took place in Queensland, Australia, September 5-7, 2007. As in
every year since 1998, the symposium brought together leading researchers and
practitioners from academia, government, and industry to discuss intrusion de-
tection research and practice.

This year, the RAID Program Committee received 101 paper submissions
from all over the world. All submissions were carefully reviewed by at least
three members of the Program Committee and judged on the basis of scientific
novelty, importance to the field, and technical quality. The final selection took
place at the Program Committee meeting held in Oakland, USA, May 22-23,
2007. Sixteen full papers and one short paper were selected for presentation
and publication in the conference proceedings, placing RAID among the most
competitive conferences in the area of computer security.

A successful symposium is the result of the joint effort of many people. In
particular, we would like to thank all the authors who submitted papers, whether
accepted or not. We also thank the Program Committee members and additional
reviewers for their hard work in evaluating submissions. In addition, we want to
thank the General Chair, George Mohay, for handling the conference arrange-
ments, Rei Safavi-Naini for publicizing the conference, Andrew Clark for putting
together the conference proceedings, and Ming-Yuh Huang for finding sponsor
support.

Finally, we extend our thanks to Northwest Security Institute, SAP, and
CERT at the Software Engineering Institute, Carnegie Mellon University for
their sponsorship and support.

September 2007 Christopher Kruegel
Richard Lippmann
Andrew Clark

Organization

RAID 2007 was organized by the Information Security Institute, Queensland
University of Technology, Brisbane, Australia.

Conference Chairs

General Chair
Program Chair
Program Co-chair
Publication Chair

Publicity Chair
Sponsorship Chair

Program Committee

Michael Behringer
Sungdeok Cha

Andrew Clark
Marc Dacier
Hervé Debar
Ulrich Flegel
Jonathon Giffin
Thorsten Holz
Farnam Jahanian
Richard A. Kemmerer
Kwok-Yan Lam
Wenke Lee
Richard Lippmann
Raffael Marty

Roy Maxion
Ludovic Mé
George Mohay
Aloysius Mok
Benjamin Morin
Rei Safavi-Naini
Vern Paxson

George Mohay (Queensland University of
Technology, Australia)

Christopher Kruegel (Technical University of
Vienna, Austria)

Richard Lippmann (Massachusetts Institute of
Technology, USA)

Andrew Clark (Queensland University of
Technology, Australia)

Rei Safavi-Naini (University of Calgary, Canada)

Ming-Yuh Huang (The Boeing Company, USA)

Cisco Systems Inc., France

Korea Advanced Institute of Science and
Technology, Korea

Queensland University of Technology, Australia

Institut Eurécom, France

France Telecom R&D, France

University of Dortmund, Germany

Georgia Institute of Technology, USA

University of Mannheim, Germany

University of Michigan and Arbor Networks, USA

University of California, Santa Barbara, USA

Tsinghua University, China

Georgia Institute of Technology, USA

MIT Lincoln Laboratory, USA

ArcSight Inc., USA

Carnegie Mellon University, USA

Supélec, France

Queensland University of Technology, Australia

University of Texas, Austin, USA

Supélec, France

University of Calgary, Canada

International Computer Science Institute and
Lawrence Berkeley National Laboratory, USA

VIII Organization

Robin Sommer

Dawn Song
Salvatore Stolfo
Toshihiro Tabata
Vijay Varadharajan
Giovanni Vigna
Jianying Zhou

Steering Committee

Marc Dacier (Chair)
Hervé Debar
Deborah Frincke
Ming-Yuh Huang
Erland Jonsson
Wenke Lee
Ludovic Mé
Alfonso Valdes
Giovanni Vigna
Andreas Wespi
Felix Wu

Diego Zamboni

International Computer Science Institute and
Lawrence Berkeley National Laboratory, USA

Carnegie Mellon University, USA

Columbia University, USA

Okayama University, Japan

Macquarie University, Australia

University of California, Santa Barbara, USA

Institute for Infocomm Research, Singapore

Institut Eurécom, France

France Telecom R&D, France

Pacific Northwest National Lab, USA
The Boeing Company, USA
Chalmers University, Sweden
Georgia Institute of Technology, USA
Supélec, France

SRI International, USA

University of California, Santa Barbara, USA
IBM Research, Switzerland
University of California, Davis, USA
IBM Research, Switzerland

Local Organizing Committee

Matt Bradford
Andrew Clark
Elizabeth Hansford
James Mackie
George Mohay
Julien Vayssiére
Jacob Zimmermann

Additional Reviewers

Hirotake Abe
Michael Bailey
Venkat Balakrishnan
Gregory Banks
Michael Becher
John Bethencourt
David Brumley
Martim Carbone

Simon Chung
Siu-Leung Chung
Evan Cooke
Malcolm Corney
Scott Fluhrer
Felix Freiling
Debin Gao

Meng Ge

Queensland University of Technology, Australia
Queensland University of Technology, Australia
Queensland University of Technology, Australia
Queensland University of Technology, Australia
Queensland University of Technology, Australia
SAP Research, Brisbane, Australia

Queensland University of Technology, Australia

Markus Hagenbuchner
Jeffrey Horton
Yiyuan Huang
Grégoire Jacob

Frank Kargl

Kevin Killourhy
Kee-Eung Kim
Sang-Rok Kim

Christian Kreibich
Junsup Lee
Minsoo Lee
Corrado Leita
Francois Lesueur
Zhuowei Li

Liang Lu

Michael Meier

7. Morley Mao
Koichi Mouri

James Newsome
Yoshihiro Oyama
Jon Oberheide
Sorot Panichprecha
James Riordan
Sebastian Schmerl
Jeong-Seok Seo
Wook Shin
Takahiro Shinagawa
Sushant Sinha

Organization X

Hongwei Sun

Rafael Timoteo de
Sousa Jr

Eric Totel

Uday Tupakula

Jouni Viinikka

Heng Yin

Stefano Zanero

Jacob Zimmermann

Table of Contents

Host-Based Intrusion Detection

Exploiting Execution Context for the Detection of Anomalous System

QEALLE 2 6 5 105 51 5 505 50 w50 o € ot 0 o s 50 o s 5 s o 8 06 55§ G R 1 IS 1
Darren Mutz, William Robertson, Giovanni Vigna, and
Richard Kemmerer

Understanding Precision in Host Based Intrusion Detection 21
Monirul Sharif, Kapil Singh, Jonathon Giffin, and Wenke Lee

Anomaly-Based Intrusion Detection

Comparing Anomaly Detection Techniques for HTTP 42
Kenneth L. Ingham and Hajime Inoue

Swaddler: An Approach for the Anomaly-Based Detection of State

Violations; in Web: ADPPHCAtIONS « s s s st s smsmms s o e e esm ave e o 63
Marco Cova, Davide Balzarotti, Viktoria Felmetsger, and
Giovanni Vigna

Network-Based Intrusion Detection and Response

Emulation-Based Detection of Non-self-contained Polymorphic

Shellcode ...t 87
Michalis Polychronakis, Kostas G. Anagnostakis, and
Evangelos P. Markatos

The NIDS Cluster: Scalable, Stateful Network Intrusion Detection on
Commodity Hardware 107
Matthias Vallentin, Robin Sommer, Jason Lee, Craig Leres,
Vern Pazson, and Brian Tierney

Cost-Sensitive Intrusion Responses for Mobile Ad Hoc Networks 127

Shiau-Huey Wang, Chinyang Henry Tseng, Karl Levitt, and
Matthew Bishop

Insider Detection and Alert Correlation

ELICIT: A System for Detecting Insiders Who Violate Need-to-Know.... 146
Marcus A. Maloof and Gregory D. Stephens

XII Table of Contents

On the Use of Different Statistical Tests for Alert Correlation — Short

PAPOF i ivims voswmams msisme. 58505 £ nmn amemmmn e oo e s s s s s s £ 5 8 167
Federico Maggi and Stefano Zanero

Malicious Code Analysis

Automated Classification and Analysis of Internet Malware 178
Michael Bailey, Jon Oberheide, Jon Andersen, Z. Morley Mao,
Farnam Jahanian, and Jose Nazario

“Out-of-the-Box” Monitoring of VM-Based High-Interaction
13 (0307 o) - I OO 198
Xuwian Jiang and Xinyuan Wang

A Forced Sampled Execution Approach to Kernel Rootkit
Identification 219
Jeffrey Wilhelm and Tzi-cker Chiueh

Evasion

Simon P. Chung and Aloysius K. Mok

Alert Verification Evasion Through Server Response Forging
Adam D. Todd, Richard A. Raines, Rusty O. Baldwin,
Barry E. Mullins, and Steven K. Rogers

Malicious Code Defense

Hit-List Worm Detection and Bot Identification in Large Networks
Using Protocol Graphs 276
M. Patrick Collins and Michael K. Reiter

SpyShield: Preserving Privacy from Spy Add-Ons 296
Zhuowei Li, XiaoFeng Wang, and Jong Youl Choi

Vortex: Enabling Cooperative Selective Wormholing for Network
Security Systems. 317
John R. Lange, Peter A. Dinda, and Fabidn E. Bustamante

Author Index 337

Exploiting Execution Context
for the Detection of Anomalous System Calls

Darren Mutz, William Robertson, Giovanni Vigna, and Richard Kemmerer

Computer Security Group
Department of Computer Science
University of California, Santa Barbara
{dhm,wkr,vigna,kemm}@cs.ucsb.edu

Abstract. Attacks against privileged applications can be detected by
analyzing the stream of system calls issued during process execution.
In the last few years, several approaches have been proposed to detect
anomalous system calls. These approaches are mostly based on modeling
acceptable system call sequences. Unfortunately, the techniques proposed
so far are either vulnerable to certain evasion attacks or are too expensive
to be practical. This paper presents a novel approach to the analysis of
system calls that uses a composition of dynamic analysis and learning
techniques to characterize anomalous system call invocations in terms
of both the invocation context and the parameters passed to the system
calls. Our technique provides a more precise detection model with respect
to solutions proposed previously, and, in addition, it is able to detect
data modification attacks, which cannot be detected using only system
call sequence analysis.

Keywords: Intrusion Detection, System Call Argument Analysis, Exe-
cution Context.

1 Introduction

A recent thrust of intrusion detection research has considered model-based de-
tection of attacks at the application level. Model-based systems operate by com-
paring the observed behavior of an application to models of normal behavior,
which may be derived automatically via static analysis [8,23] or learned by ana-
lyzing the run-time behavior of applications [3,5,12,18,15]. In each case, attacks
are detected when observed behavior diverges in some respect from the normal
behavior captured by the model. In contrast to misuse-based approaches, where
the analysis identifies attacks against applications using patterns of known ma-
licious actions, model-based schemes have the advantage of being able to detect
novel attacks, since attacks are not explicitly represented by the system. We
note that this advantage typically comes at the cost of performance, precision,
and explanatory capability, three properties that misuse-based approaches often
achieve very well.

Most model-based intrusion detection systems monitor the sequence of sys-
tem calls issued by an application, possibly taking into account some execution
state. For example, the system described in [3] monitors pairs of system calls

C. Kruegel, R. Lippmann, and A. Clark (Eds.): RAID 2007, LNCS 4637, pp. 1-20, 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 D. Mutz et al.

void write_user_data(void)

1

2i

3 FILE xfp;

4 char user_filename[256];

5 char user_data[256];

6

7 gets(user_filename);

8

9 if (privileged_file(user_filename)) {
10 fprintf (stderr, "Illegal filename. Exiting.\n");
11 exit (1);

12

13 else {

14 gets (user_data); // overflow into user_filename
15

16 fp = fopen(user_filename, "w");

17

18 if (fp) {

19 fprintf (fp, "%s", user_data);

20 fclose (fp);

21 }

22 }

23}

Fig. 1. Sample data modification attack

and records the application’s stack configuration (that is, part of the history
of function invocations). During the detection phase, the system checks if the
observed pairs of system calls (and their associated stack configuration) match
pairs recorded during the learning period. The systems described in [8] and [23]
check call sequences against automata-based models derived from the applica-
tion’s source code or binary representation, and identify sequences that could
not have been generated by the model.

Some of the shortcomings of sequence-based approaches were discussed in [2],
where the problems of incomplete sensitivity and incomplete sets of events were
introduced. Incomplete sensitivity affects models derived from static analysis.
Due to the limitations of static analysis techniques, these models may accept
impossible sequences of system calls (for example because branch predicates are
not considered).

The problem of incomplete sets of events is more general, and it affects all
approaches based on system call sequences. This problem stems from the fact
that, in these systems, the manifestation of an attack must be characterized in
terms of anomalies in the order in which system calls are executed. Changes in
the ordering of system call invocations occur, for example, because foreign code
is injected into the application (such as through a buffer overflow) or because
the order in which instructions are executed is modified. Therefore, by modeling
system call sequences, these approaches implicitly restrict themselves to only
detecting attacks that modify the execution order as expressed by the appli-
cation’s code or by the execution histories observed during a training period.
Unfortunately, an attacker can successfully compromise an application’s goals
by modifying the application’s data without introducing anomalous paths in the
application’s execution.

Consider, for example, the procedure write_user_data in Figure 1. Here, an
overflow of the variable user_data at line 14 allows an attacker to overwrite the
value contained in user_filename, which the application assumes was checked

Exploiting Execution Context for the Detection of Anomalous System Calls 3

by the procedure invoked at line 9. Therefore, the attacker can leverage the
overflow to append data of her choice to any file the application has access to.
Note that the execution of this data modification attack does not affect the type
or ordering of the system calls issued by the application.

To detect data modification attacks, models must include some representa-
tion of valid or normal program state. For example, prior work in [11] and [12]
uses learning models to characterize “normal” system call argument values and
to demonstrate that changes to program state as a result of an attack often
manifest themselves as changes to the argument values of system calls. The as-
sumption underlying this approach is that the goal of the attacker is to leverage
the privileges of an application to change some security-relevant state in the un-
derlying system (e.g., write chosen values to a file, execute a specific application,
or change the permissions of a security-critical file). This type of activity may
be readily observed as suspicious system call argument values.

One limitation of the argument modeling approach in [11], [12], and [15] is that
models of normal argument values are built for each system call. That is, one set of
models is created for open, another set for execve, and so on. As a result, a model
captures the full range of argument values observed during all phases of the exe-
cution of an application. A better approach would be to train the models in a way
that is specific to individual phases of a program’s execution. For example, the
arguments used during a program’s initialization phase are likely to differ from
those used during a production phase or termination phase. This can be achieved
by differentiating program behavior using the calling context of a procedure — that
is, the configuration of the application’s call stack when a procedure is invoked.
Similar techniques have been explored in the programming languages literature.
Examples include improving profiling by considering a procedure’s calling con-
text [1], analyzing pointer variables more accurately [9], and improving lifetime
predictions of dynamically allocated memory [16]. A common observation in these
approaches is that the calling context of a procedure is often a powerful predictor
of how the procedure and its data interact.

In this paper, we first propose and evaluate a metric for determining to what
extent argument values are unique to a particular call stack for a given appli-
cation. Our study, presented in Section 2, shows that this is predominantly the
case, indicating that the argument modeling approach of [12] can be made more
precise if models are built for each calling context in which a system call is issued
by an application. Armed with this knowledge, we then introduce and evaluate a
model-based detection system that builds separate argument models for each call
stack in which an application issues a system call. Our experiments demonstrate
that the trained models effectively generalize from the training data, performing
well during a subsequent detection period.

This paper makes the following primary contributions:

— It analyzes the relationship between system call arguments and different
calling contexts, and it introduces a novel metric to quantify the degree to
which argument values exhibit uniqueness across contexts.

— It demonstrates that the application’s call stack can be leveraged to add
context to the argument values that appear at the system call interface. It

4 D. Mutz et al.

also demonstrates that the increased sensitivity of context-specific argument
models results in better detection performance.
— It defines a technique to detect data modification attacks, which are not
detected by previously proposed approaches based on system call sequences.
— It presents an extensive real-world evaluation encompassing over 44 million
system call invocations collected over 64 days from 10 hosts.

The remainder of the paper is structured as follows. In Section 2 we introduce
and apply a metric to characterize the degree to which system call argument
values are unique to calling contexts in which system calls are issued. Then, in
Section 3, we present our detection approach, which builds argument models that
are specific to each calling context. Section 4 reports the results of evaluating the
system empirically. Section 5 covers related work on system call-based anomaly
detection. Finally, Section 6 draws conclusions and outlines future work.

2 System Call Argument and Calling Context Analysis

The effectiveness of system call analysis that includes call stack information is
directly related to the number of contexts in which a given argument value asso-
ciated with the invocations of a particular system call occurs. More specifically, if
argument values appear in many contexts, essentially randomly, context-specific
learning models are likely to offer no benefit. Furthermore, if each observed ar-
gument value appears (possibly multiple times) in only one context, we would
expect system call argument analysis that includes call stack information to
outperform context-insensitive models. In this section, we propose a metric to
express the degree of context-uniqueness of argument values. We then use this
metric to determine which applications are likely to be amenable to system call
analysis that takes into account stack-specific behavior.

Before introducing our context-uniqueness metric, we need to define some
notation. Let S = {s1, s2, ...} be the set of monitored system calls, and let A% =
(A", ..., A%) be the vector of formal arguments for system call s;. Consistent
with [6], we define the calling context of a system call invocation as the sequence
of return addresses C = (ry,...,7;) stored on the application’s call stack at the
time the system call invocation occurs. Each invocation s;; of s; has a concrete
vector of values for A% defined as a®9 = (a}”,...,an’), and two argument
vectors a®¥ and a®i’ are considered distinct if any of their subvalues alsij and
als“' differ.

We are interested in the set of argument vectors appearing in the invocation
of a system call in a particular context. For this, we introduce the notion of
an argument set. An argument set for a system call s; in a context C is the
set of all argument vectors a®7 observed for the chosen system call when it is
issued in the calling context C'. This is denoted by AS(C, s;). The argument set
for s; across the entire application (i.e., ignoring the calling context) is denoted
by AS(*,s;). We observe that if the set AS(x,s;) is partitioned by the subsets
{AS(C,si),AS(C4, s;), ...}, then each recorded argument vector a® occurs in
only one calling context.

Exploiting Execution Context for the Detection of Anomalous System Calls 5

One potential route in the development of this metric would be to adapt clus-
ter quality measures from the machine learning literature. Unfortunately, com-
puting the distance between two argument vectors a* and a®9’ is problematic.
For example, integer arguments that exhibit numeric similarity are often dissim-
ilar in their semantic meaning. This occurs in cases where an integer argument is
the logical OR of a collection of boolean flags. Computing string similarity also
presents difficulties. For example, two filesystem paths may have large common
substrings or a small Hamming distance, but correspond to files that have a
very different meaning to the users of the system. For these reasons, we build
our metric using argument vector equality only.

With this in mind, we would like to determine the number of contexts where
each distinct argument vector is used. To measure this we define the actual
partitioning value AP(s;), which is the sum over all recorded concrete argument
vectors of the number of argument sets where each a® appears during the period
of monitoring. That is,

K L
AP(si) =YY [{a*} N AS(Cpm, s:) | (1)

j=1m=1

where K is the number of distinct argument vector values recorded, and L is the
number of distinct stack configurations observed during the monitoring period.

For our context-uniqueness metric, we would like to compare the actual par-
titioning value to both the optimal partitioning and the worst case partitioning
values. For the optimal case, each argument vector should appear in as few con-
texts as possible. There are two cases to consider. In the case where the number
of distinct argument vectors is greater or equal to the number of calling con-
texts (K > L), each argument value appears in only one context in the optimal
partition of AS(x,s;). For the case when K < L, some argument vectors must
appear in more than one context!. The optimal partitioning, in this case, is for
each concrete argument vector to appear in L/K argument sets. Both cases can
be expressed by specifying the number of argument sets where each argument
vector is to appear as max(L/K,1).

We can now define the optimal partitioning value and the worst case parti-
tioning value. Since there are K distinct argument vector values, the optimal
partitioning value OP(s;) is defined as:

OP(s;) = K * max(L/K,1) = maz(L, K) (2)

To define the worst case, we need to know how many instances of each of the K
distinct argument vectors a® € AS(x,s;) were recorded during the monitoring
period. We define the counter cnt,si; as the number of times that a partic-
ular argument vector a®’ occurs in the recorded invocations. The worst case
partitioning is determined by distributing each of the K argument vectors in
AS(%,s;) over as many contexts as possible. Although a7 can appear a maxi-
mum of cnt,=i; times, there are only L distinct contexts. Therefore, a® appears

L If each distinct value appeared in only one context, then there would be contexts
with no argument vectors.

