- Manfred Broy
Bengt Jonsson
Joost-Pieter Katoen
Martin Leucker
Alexander Pretschner (Eds.)

(ge]
& g
(@)
i
—
|._

‘Model-Based Testing
of Reactive Systems

Advanced Lectures

LNCS 3472

@ Springer

" ©“/ Manfred Broy Bengt Jonsson

Joost-Pieter Katoen Martin Leucker
Alexander Pretschner (Eds.)

Model-Based Testing
of Reactive Systems

Advanced Lectures

LIV

E200501581

@ Springer

Volume Editors

Manfred Broy -
Martin Leucker

TU Munich

Institute for Informatics 14

Boltzmannstr. 3, 85748 Garching, Germany

E-mail: {broy,leucker} @in.tum.de

Bengt Jonsson

Uppsala University

Department of Computer Systems
Box 337, 751 05 Uppsala, Sweden
E-mail: bengt@it.uu.se

Joost-Pieter Katoen

University of Twente

Department of Computer Science

P.O. Box 271, 7500 AE Enschede, The Netherlands
E-mail: katoen @cs.utwente.nl

Alexander Pretschner

ETH Zurich

D-INFK, Information Security
Haldeneggsteig 4, 8092 Ziirich, Switzerland
E-mail: alexander.pretschner @inf.ethz.ch

Library of Congress Control Number: 2005927641

CR Subject Classification (1998): D.2.5, D.2.4, D.2, E3.1, D.2.11, D.3.1

ISSN 0302-9743
ISBN-10 3-540-26278-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26278-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 11498490 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz
 University of Bern, Switzerland

C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3472

Lecture Notes in Computer Science

For information about Vols. 1-3460

3

please contact your bookseller or Springer

Vol. 3569: F. Bacchus, T. Walsh (Eds.), Theory and Ap-
plications of Satisfiability Testing. XII, 492 pages. 2005.

Vol. 3562: J. Mira, J.R. Alvarez (Eds.), Artificial Intelli-
gence and Knowledge Engineering Applications: A Bioin-
spired Approach, Part II. XXIV, 636 pages. 2005.

Vol. 3561: J. Mira, J.R. Alvarez (Eds.), Mechanisms, Sym-
bols, and Models Underlying Cognition, Part I. XXIV, 532
pages. 2005. .

Vol. 3560: V.K. Prasanna, S. Iyengar, P. Spirakis, M. Welsh
(Eds.), Distributed Computing in Sensor Systems. XV,
423 pages. 2005.

Vol. 3559: P. Auer, R. Meir (Eds.), Learning Theory. XI,
692 pages. 2005. (Subseries LNAI).

Vol. 3556: H. Baumeister, M. Marchesi, M. Holcombe
(Eds.), Extreme Programming and Agile Processes in
Software Engineering. XIV, 332 pages. 2005.

Vol. 3555: T. Vardanega, A. Wellings (Eds.), Reliable Soft-
ware Technology — Ada-Europe 2005. XV, 273 pages.
© 2005.

Vol. 3552: H. de Meer, N. Bhatti (Eds.), Quality of Service
—IWQoS 2005. XV, 400 pages. 2005.

Vol. 3551: T. Hérder, W. Lehner (Eds.), Data Management
in a Connected World. XIX, 371 pages. 2005.

Vol. 3548: K. Julisch, C. Kruegel (Eds.), Intrusion and
Malware Detection and Vulnerability Assessment. X, 241
- pages. 2005.

Vol. 3547: F. Bomarius, S. Komi-Sirvié (Eds.), Product
Focused Software Process Improvement. XIII, 588 pages.
2005.

Vol. 3543: L. Kutvonen, N. Alonistioti (Eds.), Distributed
Applications and Interoperable Systems. XI, 235 pages.
2005.

Vol. 3541: N.C. Oza, R. Polikar, J. Kittler, F. Roli (Eds.),
Multiple Classifier Systems. XII, 430 pages. 2005.

Vol. 3540: H. Kalviainen, J. Parkkinen, A. Kaarna (Eds.),
Image Analysis. XXII, 1270 pages. 2005.

Vol. 3537: A. Apostolico, M. Crochemore, K. Park (Eds.),
Combinatorial Pattern Matching. XI, 444 pages. 2005.

Vol. 3536: G. Ciardo, P. Darondeau (Eds.), Applications
and Theery of Petri Nets 2005. XI, 470 pages. 2005.

" Vol. 3535: M. Steffen, G. Zavattaro (Eds.), Formal Meth-
ods for Open Object-Based Distributed Systems. X, 323
pages. 2005.

Vol. 3533: M. Ali, E Esposito (Eds.), Innovations in Ap-
plied Artificial Intelligence. XX, 858 pages. 2005. (Sub-
series LNAI).

Vol. 3532: A. Gémez-Pérez, J. Euzenat (Eds.), The Se-
mantic Web: Research and Applications. XV, 728 pages.
2005.

-

Vol. 3531:J. Ioannidis, A. Keromytis, M. Yung (Eds.), Ap-
plied Cryptography and Network Security. XI, 530 pages.
2005.

Vol. 3530: A. Prinz, R. Reed, J. Reed (Eds.), SDL 2005:
Model Driven Systems Design. XI, 361 pages. 2005.

Vol. 3528: P.S. Szczepaniak, J. Kacprzyk, A. Niewiadom-
ski (Eds.), Advances in Web Intelligence. XVII, 513 pages.
2005. (Subseries LNAI).

Vol. 3527: R. Morrison, E. Oquendo (Eds.), Software Ar-
chitecture. XII, 263 pages. 2005.

Vol. 3526: S.B. Cooper, B. Lowe, L. Torenvliet (Eds.),
New Computational Paradigms. XVII, 574 pages. 2005.

Vol. 3525: A.E. Abdallah, C.B. Jones, J.W. Sanders (Eds.),
Communicating Sequential Processes. XIV, 321 pages.
2005.

Vol. 3524: R. Barték, M. Milano (Eds.), Integration of Al
and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems. XI, 320 pages. 2005.

Vol. 3523: J.S. Marques, N.P. de la Blanca, P. Pina (Eds.),
Pattern Recognition and Image Analysis, Part II. XXVI,
733 pages. 2005.

Vol. 3522: J.S. Marques, N.P. de la Blanca, P. Pina (Eds.),
Pattern Recognition and Image Analysis, Part I. XXVI,
703 pages. 2005.

Vol. 3521: N. Megiddo, Y. Xu, B. Zhu (Eds.), Algorithmic
Applications in Management. XIII, 484 pages. 2005.

Vol. 3520: O. Pastor, J. Falcdo e Cunha (Eds.), Advanced
Information Systems Engineering. X VI, 584 pages. 2005.

Vol. 3519: H. Li, P. J. Olver, G. Sommer (Eds.), Computer
Algebra and Geometric Algebra with Applications. IX,
449 pages. 2005.

Vol. 3518: T.B. Ho, D. Cheung, H. Li (Eds.), Advances in
Knowledge Discovery and Data Mining. XXI, 864 pages.
2005. (Subseries LNAI).

Vol. 3517: H.S. Baird, D.P. Lopresti (Eds.), Human Inter-
active Proofs. IX, 143 pages. 2005.

Vol. 3516: V.S. Sunderam, G.D.v. Albada, PM.A. Sloot,
J.J. Dongarra (Eds.), Computational Science — ICCS 2005,
Part III. LXIII, 1143 pages. 2005.

Vol. 3515: V.S. Sunderam, G.D.v. Albada, PM.A. Sloot,
1.J. Dongarra (Eds.), Computational Science — ICCS 2005,
Part IT. LXIIL, 1101 pages. 2005.

Vol. 3514: V.S. Sunderam, G.D.v. Albada, PM.A. Sloot,
1.J. Dongarra (Eds.), Computational Science — ICCS 2005,
Part 1. LXIII, 1089 pages. 2005.

Vol. 3513: A. Montoyo, R. Muiioz, E. Métais (Eds.), Nat-
ural Language Processing and Information Systems. XII,
408 pages. 2005.

Vol. 3512: J. Cabestany, A. Prieto, F. Sandoval (Eds.),
Computational Intelligence and Bioinspired Systems.
XXV, 1260 pages. 2005.

Vol. 3510: T. Braun, G. Carle, Y. Koucheryavy, V. Tsaous-
sidis (Eds.), Wired/Wireless Internet Communications.
XIV, 366 pages. 2005.

Vol. 3509: M. Jiinger, V. Kaibel (Eds.), Integer Program-
ming and Combinatorial Optimization. XI, 484 pages.
2005.

Vol. 3508: P. Bresciani, P. Giorgini, B. Henderson-Sellers,

G. Low, M. Winikoff (Eds.), Agent-Oriented Information
Systems II. X, 227 pages. 2005. (Subseries LNAI).

Vol. 3507: F. Crestani, I. Ruthven (Eds.), Information Con-
text: Nature, Impact, and Role. XIII, 253 pages. 2005.

Vol. 3506: C. Park, S. Chee (Eds.), Information Security
and Cryptology — ICISC 2004. XIV, 490 pages. 2005.

Vol. 3505: V. Gorodetsky, J. Liu, V. A. Skormin (Eds.), Au-
tonomous Intelligent Systems: Agents and Data Mining.
XIII, 303 pages. 2005. (Subseries LNAI).

Vol. 3504: AF. Frangi, P.I. Radeva, A. Santos, M. Her-
nandez (Eds.), Functional Imaging and Modeling of the
Heart. XV, 489 pages. 2005.

Vol. 3503: S.E. Nikoletseas (Ed.), Experimental and Effi-
cient Algorithms. XV, 624 pages. 2005.

Vol. 3502: F. Khendek, R. Dssouli (Eds.), Testing of Com-
municating Systems. X, 381 pages. 2005.

Vol. 3501: B. Kégl, G. Lapalme (Eds.), Advances in Artifi-
cial Intelligence. XV, 458 pages. 2005. (Subseries LNAI).

" Vol. 3500: S. Miyano, J. Mesirov, S. Kasif, S. Istrail, P.

4

»

Pevzner, M. Waterman (Eds.), Research in Computational
Molecular Biology. XVII, 632 pages. 2005. (Subseries
LNBI).

Vol. 3499: A. Pelc, M. Raynal (Eds.), Structural Informa-
tion and Communication Complexity. X, 323 pages. 2005.

Vol. 3498: J. Wang, X. Liao, Z. Yi (Eds.), Advances in
Neural Networks — ISNN 2005, Part III. L, 1077 pages.
2005.

Vol. 3497: J. Wang, X. Liao, Z. Yi (Eds.), Advances in
Neural Networks — ISNN 2005, Part II. L, 947 pages.
2005.

© Vol. 3496: J. Wang, X. Liao, Z. Yi (Eds.), Advances in

Neural Networks — ISNN 2005, Part II. L, 1055 pages.
2005.

Vol. 3495: P. Kantor, G. Muresan, F. Roberts, D.D. Zeng,
F.-Y. Wang, H. Chen, R.C. Merkle (Eds.), Intelligence and
Security Informatics. XVIII, 674 pages. 2005.

Vol. 3494: R. Cramer (Ed.), Advances in Cryptology —
EUROCRYPT 2005. X1V, 576 pages. 2005.

Vol. 3493: N. Fuhr, M. Lalmas, S. Malik, Z. Szlavik (Eds.),
Advances in XML Information Retrieval. XI, 438 pages.
2005. *

Vol. 3492: P. Blache, E. Stabler, J. Busquets, R. Moot
(Eds.), Logical Aspects of Computational Linguistics. X,
363 pages. 2005. (Subseries LNAI).

Vol. 3489: G.T. Heineman, I. Crnkovic, H.-W. Schmidt,
J.A. Stafford, C. Szyperski, K. Wallnau (Eds.),
Component-Based Software Engineering. XI, 358 pages.
2005.

Vol. 3488: M.-S. Hacid, N.V. Murray, Z.W. Ra$, S.
Tsumoto (Eds.), Foundations of Intelligent Systems. XIII,
700 pages. 2005. (Subseries LNAI).

Vol. 3486: T. Helleseth, D. Sarwate, H.-Y. Song, K. Yang
(Eds.), Sequences and Their Applications - SETA 2004.
XII, 451 pages. 2005.

Vol. 3483: O. Gervasi, M.L. Gavrilova, V. Kumar, A. La-
gand, H.P. Lee, Y. Mun, D. Taniar, C.J.K. Tan (Eds.), Com-
putational Science and Its Applications — ICCSA 2005,
Part IV. XXVII, 1362 pages. 2005.

Vol. 3482: O. Gervasi, M.L. Gavrilova, V. Kumar, A. La-
gana, H.P. Lee, Y. Mun, D. Taniar, C.J.K. Tan (Eds.), Com-
putational Science and Its Applications — ICCSA 2005,
Part III. LXVI, 1340 pages. 2005.

Vol. 3481: O. Gervasi, M.L. Gavrilova, V. Kumar, A. La-
gana, H.P. Lee, Y. Mun, D. Taniar, C.J.K. Tan (Eds.), Com-
putational Science and Its Applications — ICCSA 2005,
Part II. LXIV, 1316 pages. 2005.

Vol. 3480: O. Gervasi, M.L. Gavrilova, V. Kumar, A. La-
gand, H.P. Lee, Y. Mun, D. Taniar, C.J.K. Tan (Eds.), Com-
putational Science and Its Applications — ICCSA 2005,
Part I. LXV, 1234 pages. 2005.

Vol. 3479: T. Strang, C. Linnhoff-Popien (Eds.), Location-
and Context-Awareness. XII, 378 pages. 2005.

Vol. 3478: C. Jermann, A. Neumaier, D. Sam (Eds.),
Global Optimization and Constraint Satisfaction. XIII,
193 pages. 2005.

Vol. 3477: P. Herrmann, V. Issarny, S. Shiu (Eds.), Trust
Management. XII, 426 pages. 2005.

Vol. 3476:J. Leite, A. Omicini, P. Torroni, P. Yolum (Eds.),
Declarative Agent Languages and Technologies. XII, 289
pages. 2005.

Vol. 3475: N. Guelfi (Ed.), Rapid Integration of Software
Engineering Techniques. X, 145 pages. 2005.

Vol. 3474: C. Grelck, F. Huch, G.J. Michaelson, P. Trinder
(Eds.), Implementation and Application of Functional
Languages. X, 227 pages. 2005.

Vol. 3472: M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker,
A. Pretschner (Eds.), Modell-Based Testing of Reactive
Systems. VIII, 659 pages. 2005.

Vol. 3468: H.W. Gellersen, R. Want, A. Schmidt (Eds.),
Pervasive Computing. XIII, 347 pages. 2005.

Vol. 3467: J. Giesl (Ed.), Term Rewriting and Applica-
tions. XIII, 517 pages. 2005.

Vol. 3466: S. Leue, T.J. Systd (Eds.), Scenarios: Models,
Transformations and Tools. XII, 279 pages. 2005.

Vol. 3465: M. Bernardo, A. Bogliolo (Eds.), Formal Meth-
ods for Mobile Computing. VII, 271 pages. 2005.

Vol. 3464: S.A. Brueckner, G.D.M. Serugendo, A. Kara-
georgos, R. Nagpal (Eds.), Engineering Self-Organising
Systems. XIII, 299 pages. 2005. (Subseries LNAI).

Vol. 3463: M. Dal Cin, M. Kaaniche, A. Pataricza (Eds.),

Dependable Computing - EDCC 2005. XVI, 472 pages.
2005.

Vol. 3462: R. Boutaba, K.C. Almeroth, R. Puigjaner, S.
Shen, J.P. Black (Eds.), NETWORKING 2005. XXX,
1483 pages. 2005.

Vol. 3461: P. Urzyczyn (Ed.), Typed Lambda Calculi and
Applications. XI, 433 pages. 2005.

F$b6l.362_

Preface

Testing is the primary hardware and software verification technique used by
industry today. Usually, it is ad hoc, error prone, and very expensive. In recent
years, however, many attempts have been made to develop more sophisticated,
formal testing methods. But a comprehensive account of the area of formal
testing is missing. The goal of this seminar volume is to provide an in-depth
exposure of this emerging area, especially to make it easily accessible to new
researchers in this field.

Since testing describes the methodology used to obtain better systems, it is
widely used in many scientific and industrial sectors dealing with system de-
velopment. As such, a book on testing is hardly ever a comprehensive overview
on the whole domain of testing, but a selection of important approaches and
application domains. In this volume, we focus on testing methods for reactive
systems. By reactive systems, we understand software and hardware systems
with a (usually) non-terminating behavior that interact through visible events,
such as Web servers, communication protocols, operating systems, smart cards,
processors, etc.

Furthermore, in most chapters of this book, we follow the so-called model-
based approach. The underlying assumption in the model-based approach is the
existence of a precise formal model of the system being developed. This model
can be used for studying the system to be. Especially in the testing phase of
product development, it can be used to generate complete test suites to show
conformance of the model and the actual implementation, or, just to derive
“interesting” test cases to check the developed system.

The 19 chapters of the book are grouped into six parts. In the first part, we
present the approaches for testing for finite-state machines, also called Mealy
machines. The second part, called testing of labeled transition systems, gives an
overview of the testing theory due to Hennessy and De Nicola together with its
extensions to I/0, timed, and probabilistic systems. In Part III, we focus on
methodology, algorithms, and techniques for model-based test case generation.

The methods illustrated in the first three parts of the book led to the de-
velopment of test tools and have been applied in many case studies showing

their advantages and drawbacks. Several tools and case studies are presented in
Part TV.

While test case generation can be considered the heart of testing, the testing
process as a whole is more complicated. The test cases have to executed on the
system under test. In several application domains, test suites are used to show
conformance to a standard. For this, test cases have to be interchanged among
developers. Furthermore, testing should be included in the overall development
process. In Part V, called Standardized Test Notation and Ezecution Architecture
we cover recent developments.

VI Preface

The last part of the book introduces two extensions of the typical testing
approach. It describes methods for the continuous testing effort, also at a later
run-time of the system. Furthermore, it recalls essentials of model checking, a
different powerful technique to get “better” systems, on the one hand to separate
model checking and testing, on the other hand to show possible combination
leading to approaches like black box checking or adaptive model checking. We
meaningfully term this last part Beyond Testing.

The volume is the outcome of a research seminar that was held in Schloss
Dagstuhl in January 2004 and that took place as part of the so-called GI/Re-
search Seminar series. Thirty three young researchers participated in the semi-
nar; each of them prepared a presentation based on one or several recent articles,
reshaping the material in form with special emphasis on motivation, examples,
and also exercises.

Thanks are due to the International Conference and Research Center of
Dagstuhl and the “Gesellschaft fiir Informatik (GI)” for the support it provided.
Further funding was provided by the Research Training Network GAMES fi-
nanced by the European Commission under the Fifth Framework Programme.
We also would like to thank the authors of the tutorial papers as well as their
reviewers for their efforts. Last but not least, we would like to thank Britta
Liebscher and Springer for substantial help in technical and editorial matters.

The editors hope that this book will help many readers to enter the domain of
model-based testing, either to apply the so-far-developed techniques to enhance
their product under development, or to improve the current testing techniques
to make them even more efficient and effective.

Munich, Uppsala, Enschede, Zurich, January 2005 Manfred Broy
Bengt Jonsson

Joost-Pieter Katoen

Martin Leucker

Alexander Pretschner

Contents

Part 1. Testing of Finite State Machines

1 Homing and Synchronizing Sequences 5
Sven Sandberg

2 State Identification.............. 35
Moez Krichen

3 State Verification 69
Henrik Bjorklund

4 Conformance Testing.............. 87
Angelo Gargantini

Part II. Testing of Labeled Transition Systems

5 Preorder Relations 117
Stefan D. Bruda

6 Test Generation Algorithms Based on Preorder Relations 151
Valéry Tschaen

7 1I/O-automata Based Testing 173
Machiel van der Bul, Fabien Peureuz

8 Test Derivation from Timed Automata 201
Laura Branddn Briones, Mathias Rohl

9 Testing Theory for Probabilistic Systems..................... 233
Verena Wolf

Part ITI. Model-Based Test Case Generation

10 Methodological Issues in Model-Based Testing 281
Alezander Pretschner, Jan Philipps

11 Evaluating Coverage Based Testing 293
Christophe Gaston, Dirk Seifert

12 Technology of Test-Case Generation 323
Levi Licio, Marko Samer

VIII Contents

13 Real-Time and Hybrid Systems Testing 355
Kirsten Berkenkdtter, Raimund Kirner

Part IV. Tools and Case Studies

14 Tools for Test Case Generation 391
Azel Belinfante, Lars Frantzen, Christian Schallhart

15 Case Studies 439
Wolfgang Prenninger, Mohammad El-Ramly, Marc Horstmann

Part V. Standardized Test Notation and Execution Architecture

18 LTMCIN=3 : iocioiisims 5msae amaimmnmsimme i smeiore n oot 50558 55 55 555 465
George Din

17 UML 2.0 Testing Profile 497
Zhen Ru Dai

Part VI. Beyond Testing

18 Run-Time Verification 525
Séverine Colin, Leonardo Mariani

19 Model ChecKking. 557
Therese Berg, Harald Raffelt

Part VII. Appendices

20 Model-Based Testing — A Glossary 607
Alezander Pretschner, Martin Leucker

21 Finite State Machines.................... 611
Bengt Jonsson

22 Labelled Transition Systems 615
Joost-Pieter Katoen

Literature 617

Part I

Testing of Finite State Machines

The first part of the book is devoted to the problem of black-box testing of finite
state machines in order to discover properties of their behavior and to check that
they conform to given specifications.

Finite state machines is a widely used model for reactive systems. It has been
used to model systems in a wide variety of areas, including sequential circuits,
communication protocol entities, and embedded controllers. The study of testing
of finite state machines has been motivated as fundamental research in computer
science, and by applications in the testing of sequential circuits, communication
protocols, embedded controllers, etc. For the case of sequential circuits, there
were activities in the 60’s and 70’s. Since the 80’s, there has been quite a lot
of activity motivated by the problem of conformance testing for communication
protocols. This area has generated invaluable insights into the problem of testing
the reactive aspects of systems, which can be used in testing today’s complex
reactive systems.

Although FSM notation is simple, conformance testing for FSMs is very
useful in practice. FSMs have been widely used to directly specify many types
of systems, including protocols, embedded control systems and digital circuits.
Moreover, many formal notations are very similar to finite state machines, or use
FSMs to specify some parts of the systems. Such notations include StateCharts
[Har87], SDL for communication protocols [BH89], UML state diagrams [RJB99)
and ASM [Gur94] for software, and StateFlow [Sta] and SCR [HIL96] for reactive
systems. Note that many control or reactive systems are described by an infinite
set of states and infinite transitions. However, it is often possible to extract

2 Part I. Testing of Finite State Machines

for such systems a system part or a particular system behavior or interaction
with the environment, which can be modeled by a finite state machine. In many
case this can be done through an abstraction process that allows the designer
to ignore some details and focus on the finite part of the system interaction
with the environment. This finite part of the specification can be used to derive
tests and to test the whole system. To apply these tests to the complete system,
we have to assume that we know the input and output finite vocabulary, and
that the system produces a response to an input signal within a known, finite
amount of time. A state of the system can be defined as a stable condition
in which it has produced the expected output and is waiting for a new input.
A transition is defined as the consumption of an input, the generation of an
output, and the possible move to a new state. In this chapter we consider only
deterministic systems, i.e. that produce the outputs and move to the next state
in a deterministic way.
Typical problems from applications are as follows.

e Conformance testing: Check that a finite state machine conforms to a given
specification. Typically the specification is given as a finite machine, and the
conformance testing is to check whether the system under test is equivalent
to its specification, or that it implements it in the sense of some preorder
relation.

e Property checking: Check that the behavior of a finite state machine sat-
isfies certain properties. These properties can be formulated, e.g., in some
temporal logic.

e Automata Learning: Given a finite state machine, determine its behavior.
This is a harder problem, which is considered in Section 19.4 of this volume.

In this Chapter, we will focus on the problem of conformance testing. There is
a wide literature on conformance testing, especially in the area of communica-
tion protocol testing. Most of these algorithms combine techniques for attacking
subproblems that investigating particular states or transitions of a finite state
machine. We will therefore first consider these subproblems and techniques for
their solution in Chapters 1 — 3. Chapter 4 will discuss how they can be com-
bined to the problem of testing conformance.
The contents of the respective chapters are as follows.

e Chapter 1 considers the construction of Homing and Synchronizing Sequen-
ces: given a finite state machine with known states and transitions, a syn-
chronizing sequence is a sequence of input symbols which takes the machine
to a unique final state, independent of the starting state. A homing sequence
is a sequence such that the final state (which need not be unique) can be
uniquely determined by observing the output.

e Chapter 2 considers the problem of State Identification: Given a finite state
machine with known states and transitions, identify in which state the ma-
chine currently is.

e Chapter 3 considers the problem of State Verification: Given a finite state
machine with known states and transitions, verify that a machine is in a
particular state Bjorklund (36)

Part I. Testing of Finite State Machines 3

e Chapter 4 considers the problem of Conformance Testing is considered:
Check that a finite state machine conforms to a given specification, given as
a finite state machine.

Many works in the literature on testing of finite state machine assume that
systems are be modeled as Mealy machines. Mealy machines allow to model both
inputs and outputs as part of their behavior, and are therefore a suitable abstract
model of communication protocol entities and other types of reactive systems.
An overview of testing finite state machines is given in [LY94, LY96], from which
much of the material for this section is taken. Overviews of conformance testing
for communication protocols can be found in [SL89, Hol91, Lai02].

The basic concepts of finite states machines used in the following chapters is
given in Appendix 21.

1 Homing and Synchronizing Sequences

Sven Sandberg

Department of Information Technology
Uppsala University
svens@it.uu.se

1.1 Introduction

1.1.1 Mealy Machines

This chapter considers two fundamental problems for Mealy machines, i.e., finite-
state machines with inputs and outputs. The machines will be used in subsequent
chapters as models of a system or program to test. We repeat Definition 21.1 of
Chapter 21 here: readers already familiar with Mealy machines can safely skip
to Section 1.1.2.

Definition 1.1. A Mealy Machine is a 5-tuple M = (I, O, S, 4, \), where I, O
and S are finite nonempty sets, and § : S x I — S and A\ : S x I — O are total
functions.

The interpretation of a Mealy machine is as follows. The set S consists of
“states”. At any point in time, the machine is in one state s € S. It is possible
to give inputs to the machine, by applying an input letter a € I. The machine
responds by giving output A(s, a) and transforming itself to the new state d(s, a).
We depict Mealy machines as directed edge-labeled graphs, where S is the set of
vertices. The outgoing edges from a state s € S lead to d(s, a) for all a € I, and
they are labeled “a/b”, where a is the input symbol and b is the output symbol
A(s, a). See Figure 1.1 for an example.

We say that Mealy machines are completely specified, because at every state
there is a next state for every input (0 and A are total). They are also determin-
tstic, because only one next state is possible.

Applying a string ajap ---ar € I* of input symbols starting in a state s
gives the sequence of states s1,s2,...,5041 with s;41 = d(s;, a;). We extend
the transition function to 0(si, a1az--- ai) = Sk+1 and the output function to
A(s1,a1an -+ - ag) def A(s1, a1)A(s2, a2) - - A(sk, ax), i.e., the concatenation of all
outputs. Moreover, if @ C S is a set of states then 6(Q, z) def {6(s,2) : s € Q}.
We sometimes use the shorthand s—~t for §(s, a) = ¢, and if in addition we know
that A(s, a) = b then we write s—2/%+¢. The number |S| of states is denoted n.

Throughout this chapter we will assume that an explicit Mealy machine
M= (I,0,5,6,)\) is given.

M. Broy et al. (Eds.): Model-Based Testing of Reactive Systems, LNCS 3472, pp. 5-33, 2005.
© Springer-Verlag Berlin Heidelberg 2005

6 Sven Sandberg

a/0 b/0
0
52 / S1
b/1 b/0
S S.
3 1 4
b/1 a/0

Fig.1.1. A Mealy machine M = (I, 0, S,6,\) with states S = {s1, s2, 83, 84}, input
alphabet I = {a, b}, and output alphabet O = {0, 1}. For instance, applying a starting
in s produces output A(s, a) = 0 and moves to next state 6(s, a) = t.

1.1.2 Synchronizing Sequences

In the problems of this chapter, we do not know the initial state of a Mealy
machine and want to apply a sequence of input symbols so that the final state
becomes known. A synchronizing sequence is one that takes the machine to
a unique final state, and this state does not depend on where we started. Which
particular final state is not specified: it is up to whoever solves the problem to
select it. Thus, formally we have:

Definition 1.2. A sequence z € I* is synchronizing (for a given Mealy ma-
chine) if [6(S,z)] = 1.1 O

Note that synchronizing sequences are independent of the output. Conse-
quently, when talking about synchronizing sequences we will sometimes omit
stating the output of the machine. For the same reason, it is not meaningful
to talk about synchronizing sequences “for minimized machines”, because if we
ignore the output then all machines are equivalent.

Ezample 1.3. Synchronizing sequences have many surprising and beautiful ap-
plications. For instance, robots that grasp and pick up objects, say, in a factory,
are often sensitive to the orientation of the object. If objects are fed in a random

! The literature uses an amazing amount of synonyms (none of which we will use
here), including synchronizing word [KRS87], synchronization sequence [PJH92|, re-
set sequence [Epp90], reset word [Rys97], directing word [CPR71], recurrent word
[Rys92], and initializing word [G6h98]. Some texts talk about the machine as being
a synchronized [CKKO02|, synchronizing [KRS87], synchronizable [PS01], resettable
[PJH92], reset [Rys97], directable [BICP99], recurrent [Rys92], initializable [G6h98],
cofinal [ID84] or collapsible [Fri90] automaton.

1 Homing and Synchronizing Sequences 7

orientation, the problem arises of how to rotate them from an initially unknown
orientation to a known one. Using sensors for this is expensive and complicated.
A simple and elegant solution is depicted in Figure 1.2. Two parallel “pushing
walls” are placed around the object, and one is moved toward the other so that
it starts pushing the object, rotating it until a stable position between the walls
is reached. Given the possible directions of these pushing walls, one has to find
a sequence of pushes from different directions that takes the object to a known
state. This problem can be reduced to finding a synchronizing sequence in a
machine where the states are the possible orientations, the input alphabet is the
set of possible directions of the walls, and the transition function is given by
how a particular way of pushing rotates the object into a new orientation. This
problem has been considered by, e.g., Natarajan [Nat86] and Eppstein [Epp90],
who relate the problem to automata but use a slightly different way of pushing.
Rao and Goldberg [RG95] use our way of pushing and their method works for
more generally shaped objects. a

A & —

(a) (b) (c) (d)

Fig.1.2. Two pushing walls rotating the object to a new position. (a) The object. (b)
One wall moves toward the object until (c) it hits it and starts pushing it, rotating it
to the final stable position (d).

i

An alternative way to formulate the synchronizing sequence problem is as
follows. Let S be a finite set, and fi,...,fx : S — S total functions. Find a
composition of the functions that is constant. Function f; corresponds to d(-, a;),
where qa; is the i’th input symbol.

Ezample 1.4. To see that synchronizing sequences do not always exist, consider
the Mealy machine in Figure 1.1. If the same sequence of input symbols is applied
to two states that are “opposite corners”, then the respective final states will be
opposite corners too. So in particular no sequence z satisfies §(s;,z) = §(s3, z)
or §(sq,z) = (84, 7). a

Besides the parts orienting problem in Example 1.3, synchronizing sequences
have been used to generate test cases for synchronous circuits with no reset
[CJSP93], and are also important in theoretical automata theory and structural
theory of many-valued functions [Sal02].

