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PREFACE T

With the advent of super computers during the last ten years, the
numerical simulatfon of visco;’; fluid flows uoddlgd by the Navier-Stokes
equations is becomiing a most useful tool in Aircraft and Engine Design. In
fact, conpr‘uﬁl'o Navier-Stokes solvers tend to comstitute the *b:nic_
tools for mamy industrial applications occuring in the simulation of very’
complex turBul_ent snd combustion phenomena. In Aerospace Engineering, as
an ex-aple,. their mathematical modelization requires reliable and xobust
methods for solving very'stiff non linear partial differential equations,..

For the above reasons, it was clear that a workshop on this topic
would be of. interest for the CFD community in order to compaz:e accuracy
and efficiency of Navier-Stokes solvers on selected external and intem._l_
flow problems using different numerical approaches. "'3-’

The workshop was held on 4-6 DecenberK 1985 at Nice, France and
otganized'l:y INRIA with the spomsorship of the GAMM Committee on Numerical
Methods in Fluid Mechanies.

The organizers wish to express their thanks to :

- Professor U. Schumann, Chairman of the GAMM Committee for giving them
the possibility to hold this workshop,

- Professor R. Peyret for presenting a survey paper and for fruitful
discussions during the preparation of the workshop,

- Professor J. Allegre, Drs M. Raffin and J.C. Lengrand for providing
experimental results which give an added interest to the workshop,

- chaipersons for their active parts in directii\g open discussions,

- all the attendees for their effort in complying with the requirements on
the presentation of results,

- Mrs 0. Labbé who efficiently contributed to the comparison of the
results of Problem (B) by carrying out the plotting of the numerical da_ta,
- the "Service des Relations Extérieures" at INRIA whose help contributed
for a large part to the successof the meeting,

- Mrs C. Barny and C. Dubois for their careful typing during the
preparation of the workshop and of the synthesis.

M.O. BRISTEAU, INRIA

R. GLOWINSKI, Univ. of HOUSTbN/IN'RIA
J. PERIAUX, AMD/BA

H. VIVIAND, ONERA.
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PRESENTATION OF PROBLEMS AND
DISCUSSION OF RESULTS

M.0. BRISTEAU
INRIA, B.P. 105, 78153 LE CHESNAY CEDEX, FRANCE

-

! R. GLOWINSKI
UNIVERSITY OF HOUSTON, TEXAS, U.S.A. and INRIA

J. PERIAUX
AMD/BA, B.P. 300, 92214 SAINT CLOUD, FRANCE

H. VIVIAND
ONERA, 92320 CHATILLON, FRANCE

1. INTRODUCTION

The workshop was organized with the specific purpose to bring
together a small number of scientists highly concerned with the numerical
solution of the compressible Navier-étokes equations.

Two test problems namely external flows past an qairfoil (A) and
internal flows in a double throat nozzle (B) were defined with the
following features : -

i) they should be on simple analytical geometries, suited for a wide
range of methods (finite differences, finite volumes, finite elements,
spectral, etc...).

ii) they should be 2-D laminar viscous flows with moderate gradients
in order to avoid the introduction of turbulent models and also large
instabilities due to strong shock-boundary layer interactions, too much
costly in CPU time for researchers with limited computer facilities.

In practice the proposed test cases correspond to transonic or
supersonic steady flows at low or moderate Reynolds numbers. Two tests
cases for problem (A) were chosen because of existing experimental results.



For both problems (A) and (B) the main challenge was the computation
of the pressure and skin friction coefficients on the wall.

2. THE PROBLEMS FOR ANALYSIS

2.1. Fluid characteristics

For both problems (A) and (B), we assume that

- the fluid is a perfect gés with constant specific heats Cp’ Cv, of ratio :
7=C,/C, =14

- the viscosity coefficient A, py verify the Stokes relation :

3+ 2p=0
- the viscosity coefficients and the thermal conductivity coefficient k
are constant and the Prandtl number is :
Pr = u Cp / k=0.72
y
2,2. Problem (A) : External 2D flow around a NACA0O12 airfoil

Geometry

We consider the NACA0012 airfoil extended to a closed trailing-edge
(with zero thickness). It is a symmetrical airfoil and the equation of the
upper surface is :

1/2 2

FG) = 5 £(0.2969 x/2- 0.126 % - 0.3516 X2 + 0.2843 %> - 0.1015% ),
where

= the chordwise distance from the leading edge at X = 0 referred to ey
= the upper-surface coordinate referred to e

= 0.12 (value of thiékn.ss parameter ‘for NACA0012).

il R

For the closed profile

0<x =< 1. 008930411365

B
Z 52z
i 1 H
] ]
1 )
C
. c = 1.0089 c



Taking the chord c¢ of the closed profile as reference length, the

dimensionless coordinates to be used are :

‘ 1.0089 1.0089

Note : The extended profile has a relative thickness of 0.12/1.0089.

Boundary Conditions

The following boundary conditions are prescribed : \

Yy = 0, adherence condition

TB - To - Tm (1 + lél Hi), free stream total temperature ;
at infinity, a uniform flow defined by the following parameters :
Hw = Mach number at infinity,

a = angle of attack,

Re = Reynolds number, Re —lEJpnc
B

Test Cases

Seven test cases are proposed :

Al : Hm - .8 a = 10° Re = 73 (mandatory)
A2 : Mw - .8 a = 10° Re = 500 (mandatory)
A3 : MQ - - a = 10° Re = 106 (mandatory)
AG : M= 2. a = 10° Re = 1000 (optional)
ASA: Hm = .85 a = 0° Re = 500 (mandatory)
A6 MQ = .85 a= 0° Re = 2000 (optional)
A7 : M = .85 a= 0° Re = 10000 (optional)

The six cases Al-A6 give steady flows, only the optional case A7 is

associated with an unsteady flow.

The cases Al and A3 have been prescribed because experimental ‘
results were available for these data of the problem. It would have been\
interesting to associate slip conditions to these cases because they are
closer to the conditions of the experiments.

The test case A, leads to a separated flow. The main f;Ature of the

2
supersonic cases A3 and Aa is a detached bow shock.



The Reynolds numbers of case As, A6, A7 associated with the same
Mach number are chosen in order to allow the comparison of the thickness
of the boundary layers and to check that they vary as 1/J/Re.

Tlumerical results

The authors have selected the most representative results among the

>llowing numerical outputs of the proposed test cases :

- Plots of the mesh,

- Wall distributions : |
P-P,

ST

a) pressure coefficient, C_ =

b) skin friction coefficient, C

W
) ) £ = 2°
3 (r, = wall shear stress) % pJul) .

q
c) heat flux coefficient, Gh - TJ—S-
% p ju

(q = heat“flux, positive if directed from the wall to the fluid)

* - Contour maps
a) Mach number,
b) pressure,
c) density.
- Convergence history plots of the following residuals :

S+l
e e 2
_LQﬁL.—l

‘e "-Jx,z

p o™ 2

AL, :: Y Ebﬁngi
ek

1 : ‘0:"“1-3'11‘2 ‘ . -

ac |PJ9J2|L2



2.3. Problem (B) : Internal flow in a double throat nozzle

The double throat nozzle of test problem (B) was designed with the
aim of generating strong viscous interaction phenomena in steady, laminar,
compressible flows in a well-bounded domain. Supersonic flow conditions
are first obtained by means of a simple converging-diverging nozzle. Then
the wall is turned concave and a converging channel region is thus formed.
It is in this diverging-converging part of the nozzle, with partly
supersonic flow conditions, that we expect compression waves, shock waves
and separation phenomena to occur. Then the flow goes through a second

throat and is allowed to expand rapidly in a second diverging channel.

Geometry

This plane symmetrical nozzle is shown on the figure below. The wall
is made up of 5 polynomial arcs, with continuity of slope and of
curvature, except for the points x - X, and x = Xg where the curvature is
discontinuous.

The origin of the abscissa, x = 0, is taken at the first throat. The
half-height at x = 0 is chosen as reference length in the following

equations.

f IOpE——

|
W =
- N
]
©
|
® >
w
o
»
&
F=3
]
u
®
~
0"

Nozzle geometry

Arc III (first throat region)

Xq <=x s X Xq = - 4, X, = 2.3




2
X X, X
LR bt
y=1l+35x" [ &+ - —3 X + %%, ], |a=-0.03

We deduce :

a 3 1
y(x3) =1+ s X3 (2x4 -3 x3)

' a2 1
Y'(%g) = 3 X3 (%, - 3.%Xq)

s a3 1
y(xh) -1+ 3 X, (x3 - le‘)
il a2 1
L gL e £ R T £

The points x = X4 and x = x, are inflexion points (y" = 0). The throat

4
radius of curvature is R = . S —k
a Xy X, 0.276 °
Arc II (convergent)
x25x5x3 5 x2--10
, 1, "% 2
¥y o= y(xy) + ¥ () (x -xq) [1 -3 (—x2 = x3) ]
We deduce :

y(x,) = y(xy) + % (x2-x3) y'(x5)

At x = x,, y' = 0.

Arc I (constant section inlet)

xlsxsx X, = - 12,

2 " 1

y =y -

Arc IV (divergent-convergent)

Xe = 7.

X, £ X <X 5

4 5 *

The second throat is at x = X, y'(xs) = 0, with y(xs) given :

y(xg) = 1.6




y = yx) + (x-x) [y°(x,) + Ag X + B, X)
X = (xx,) / (xg-%,)

Ay =4 C, - 3 y'(x,)

BS - -3 C5 + 2 y'(xa)

Cs = y(xg) - ¥(x,)) / (x5-%,) -

We deduce
" _6—_ ’
y(xS-O)— . - [—265+y(xa)]>0
5 4
Arc V (divergent)
xssxsx6 x6-1l.;,

y(x6) = 5.85

y = y(xg) + [y(xg) - y(xg)] 2 [2-2]
z = (x-Xg5) / (%Xg-Xg)

Notethaty"-Oatx—x5+0andatx-x6.

Discussion of problem (B)

Uniqueness of steady solutions of the compressible Névier-Stokes
equations for this problem remains an open question from a mathematical
point of view, and special attention must be given to the geometry and to
some of the flow boundary conditions in order to come as close as possible
to a well-posed problem. Since we do not have a complete mathematical
proof that this will be the case, we must rely upon the physical
understanding of the flow problem. In this respect, it can be noted that
an internal flow bounded by inflow and outflow section appears to raise
more questions than the unbounded flow past a finite obstacle since, in
this latter case, uniform flow conditions apply at infinity (of course
practical difficulties may arise because the outer boundary is located at
a finite distance). :

In order to define unambiguous reference quantities, it is best to
assume that the :I.nco‘ming flow at the entrance sect‘ion possesses an
inviscid isenti:opic core, so that the corresponding reservoir conditions
provide the needed reference values (total enthalpy or temperature, sound

speed, pressure...). Furthermore, to avoid the problem of the choice of



the flow conditions to be specified across a viscous layer at the inflow
boundary, we take zero boundary layer thickness at this boundary, which
amounts to assuming inviscid isentropic flow across the entire entrance
section, except at the wall itself where to no-slip condition is imposed.
In fact, whether or not the no-slip .condition is imposed at the entrance
section does not make any appreciable difference if this section is large
enough (compared to throat section) : for example, when the Mach number
changes from M - 0 to M, = 0 at constant total enthalpy and constant
pressure, the relative demsity variation is (p,-p,)/p; = Jél H;. which
gives 2><10-3 at “2 = 0.1. Moreover this alternative is more or less
equivalent to a variation in the location of the nozzle entrance section
equal to one mesh size Ax, which is negligible. '

Thus entropy and total enthalpy are known over the entire entrance
section. If we assume that inviscid flow theory can be applied at this
section, then an additional condition is needed ‘in subsonic flow ; the
upstream part of the nozzle is made with parallel walls, so that it is
reasonable to assume parallel flow (v = 0) at the entrance section.

At the exit sectidn, the flow is in a state of rapid expansion, with
a large supersonic part, which makes it reasonable to assume that upstream
influence (i.e. the elliptic nature of the equations), can be neglected
i.e. that the flow conditions in this section are entirely determined from
the flow properties upstream without the need to impose some boundary
conditions.

Finally, taking into account all the above conditions, we assume
that, for given reservoir conditions and given physical reference length
(hence given Reynolds number), as in inviscid flow there is a maximum
value QH of the mass flow rate Q such that no solution exists for Q > QK
and the solution exists and is unique for Q = QH‘ Problem (B) is concerned
with this solution corresponding to the maximum mass flow rate which is
unknown. _

The second throat has been chosen large enough compared to the first
one so that the maximum mass flow rate cortespondl‘ to a change from
subsonic to supersonic flow across thes first throat at least in the core
around the nozzle axis. In other words the solution for maximum mass flow

rate is determined by the first throat.



Boundary conditions

At the wall
- no-slip condition 4, = 0

- temperature equal to the reservoir temperature : TW = TO

Upstream boundary (inlet section, X = X, = -12.)

- total enthalpy equal to reservoir enthalpy, i.e.

2

a
LB L & 4T 0 .
1lp 2% -1 oy -1

- entropy equal to reservoir entropy, i.e.
p el =pypp 2

An additional condition may be specified. but all the flow
properties cannot be known in advance since the mass flow rate is not
arbitrary. A natural condition is that of parallel flow, i.e. : v = 0,

where v is the y-component of velocity.

Test Cases
The only remaining parameter is the Reynolds number defined as :
i
Reo =3, L o / B
where the subscript 0 refers to reservoir conditions, and L is the nozzle
half-height at the first throat x = 0. (we recall that the viscosity is a
constant).

The flow in this nozzle should be computed for the following three
values of the Reynolds number :

test case B, : Reo = 100

j &
test case B2 : Reo = 400
test case B3 : Reo = 1600

Numerical results

The suggested numerical outputs were the following :
- Plots of the mesh,
- Wall distributions :

a) pressure , p/p0
. T

b) skin friction coefficient, Cf - —___E_E_’
(rw = wall shear stress) g Po %o



