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Preface

The selection of material and the form of presentation for this book grew out
of several courses in applied mathematics that I have taught to graduate and
undergraduate students of physics, chemistry, and engineering over the past 10
years. Two main problems face an instructor of applied mathematics courses that
are intended for advanced students in the physical sciences. Since there are more
topics of importance than can be covered in a typical one-year course, a choice
of subjects must be made, based on the needs of the students and the prejudices
of the instructor. Second, the style of presentation of the topics can range from
the cookbook method of developing many results and tricks by studying physical
applications to the completely general and rigorous abstract approach.

It is for these two reasons that this textbook on applied mathematics now
competes for the attention of physical science students. I have been unable to
find a single textbook that covered all of the necessary topics and treated them
with sufficient rigor and generality while still remaining intelligible to most
students in the class. This is a value judgment that cannot be defended in
absolute terms. The fact that many other texts exist in this general area shows
that several competent authors have reached a conclusion very different from
mine. This in itself is not criticism of their work nor, I hope, of mine. Readers
will choose the approach that best fits their needs.

The purpose of this text is to cover the topics that are necessary to give the
student a sufficiently broad background for his advanced studies in the physical
sciences and to present this material with enough rigor and generality to provide
him with a unified view and a solid ‘'understanding of this material. The
philosophy underlying the development of this text is that it is as important for a
student to know when a given theorem or result applies and to be aware of the
subtlety of certain questions as it for him to be familiar with the mechanics of the
applications of these principles. One of the most important goals to be achieved
in studying mathematics is the development of a certain method of thinking and
a style of approach to a problem. Nevertheless, technical skills must be
developed and there are many problems included to accomplish this, as well as
to extend the material of the text.

I assume that students have a calculus background through the differentiation
and integration of functions of several real variables. On this assumption I have
usually been able to cover Chapters 1 through 6 the first semester and Chapters
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7 through 9 the second. It is generally true that physical science students have
strengths in certain areas of mathematics and weaknesses in others as a result of
the use they have made of mathematics in their physical sciences courses. The
text attempts to build on these strengths and not to cover old material
unnecessarily. It does not abound with “typical”’ hackneyed examples from
physics and engineering, since students taking this course invariably have had or
are taking courses in mechanics, electricity and magnetism, quantum mechanics,
or other such courses that apply many of the techniques developed here. No
attempt is made to provide direct motivation for each topic covered by
illustrating these techniques with specific applications. The student should have
enough sophistication to study the mathematics itself. It has been my experience
that students do not enjoy or greatly profit from going over the same applica-
tions in several different courses. Such specific problems receive much more
detailed consideration in other advanced courses. The most general and abstract
discussions and proofs are not always given but, instead, those that the student’s
background will allow him to understand well. Nevertheless, the assumptions
made in proving important theorems are kept as weak as is consistent with this
goal. Many details of proofs and some advanced topics have been relegated to
chapter appendices to facilitate the development of central ideas in each chapter.
Useful results are listed in tables at the end of various chapters for ease of
reference. _

- Since most physical science students for whom this text is designed have a
working familiarity with, or little difficulty in grasping, three-dimensional vector
analysis and even the elements of tensor analysis, no time is spent on these
topics, although frequent reference is made to simple analogies from these fields.
No knowledge of the Lebesgue theory of integration is assumed, even though it
is only with this that concepts such as complgteness and the theory of linear
operators on a Hilbert space can be fully appreciated. At several points in the
first chapter, and later in the text, the symbol ¥, (standing for Lebesgue
square-integrable) appears. The reader can usually grasp the essence of the point
being made by thinking in terms of the more familiar Riemann definition of an
integral. A brief discussion of measure and of the Lebesgue definition of an
integral is given in Appendix II. Symbolic notation has been used often in the
text since it sometimes makes an argument sufficiently compact that is more
easily understood. Furthermore, the student will find reference to more ad-
vanced works easier once he has become accustomed to it.

Clearly the most important unifying concepts in the text are those of a linear
vector space and of the theory of linear operators on such spaces. Chapter 2 sets
the style for most of the further considerations of the book. The debt owed for
this central chapter, and for much of the text, goes to Bernard Friedman’s
Principles and Techniques of Applied Mathematics. In fact it is my belief that, had
the late Professor Friedman chosen to write another book covering a few more
topics and with more background material, but with the same beautiful style of
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clarity and logic as his Principles and Techniques, then many of the applied
mathematics texts published in the last 15 years would have been unnecessary.
Chapter 2 also lays the foundation for the work on integral equations in the
discussion of completely continuous linear operators. Chapter 3 develops many
important properties of linear operators, mainly in finite-dimensional Hilbert
spaces.

Chapter 4 deals with the very important topic of complete sets of functions in

.terms of the Weierstrass approximation theorem and the basic theorem on
Fourier series. Other complete sets of functions, such as Legendre polynomials,
are also introduced. Separation of variables and the subsequent applications to
boundary value problems are not given any great space either here or later in the
text. Most students already know how to apply the method but have little
understanding of the concept of completeness, which is discussed extensively
here. Rigorous treatments of Fourier series and of Fourier integrals are given in
as general a form as is possible without using results from Lebesgue integration
theory.

The principal result on the existence and uniqueness of the solution to
Volterra integral equations, established early in Chapter 5, serves as a basis for a
later discussion of ordinary differential equations. The main business of Chapter
5 is a development of Fredholm theory culminating in a proof of the Hilbert-
Schmidt theorem. The basic approach taken for several topics in this chapter is
that of the limit as n—o of a set of linear algebraic equations in a
representation-dependent framework. Although this is somewhat cumbersome
in detail for a few of the proofs, it is very easily understood conceptually. The
more elegant and powerful technique of defining completely continuous
operators in terms of sequences and convergent subsequences of vectors is also
introduced in the text and developed in an appendix.

Chapter 6 is a brief introduction to the calculus of variations and follows the
basic approach of,the classic small volume by Gilbert A. Bliss. There is also a
discussion of Noether’s theorem that plays such an important role in modern
formulations of mechanics and field theories.

The long Chapter 7 on complex variables stresses methods of analytic
continuation, especially as applied to the classical functions of mathematics.
Very little is done with conformal mapping, since this is a rather specialized tool
presenting no conceptual difficulty but best learned in some specific area of
application. Complex variables is a very useful subject for physical scientists.
who seem to have relatively little difficulty with it, unlike discussions of sets,
completeness, and Hilbert spaces, for example. Perhaps this is easily understood
since Riemann formulated many of his great theorems in complex variable
theory by considering the idealized flow of electric charges along thin conducting
surfaces. Illustrations prove very useful here and are used abundantly.

Chapter 8, on linear differential equations and Green’s functions, begins with
a brief introduction to distributions or ideal functions. A fairly complete and
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rigorous treatment is then given of Green’s functions for second-order linear
differential equations in a single variable. A discussion of the important topic of
the continuous spectrum for differential operators in an infinite domain is given.
Finally Green'’s functions are developed for some common differential operators
in three dimensions, but with considerably less rigor than in the one-dimensional
case.

Chapter 9 on group theory has been included because this is a subject of
considerable importance to physical scientists today, and it is one that they are
very often unfamiliar with. After a general introduction most of the emphasis is
placed on continuuus Lie groups and in particular on the three-dimensional
rotation group and its representations. Eugene P. Wigner’s classic text, first
published in 1931, serves as the basic reference, as well as Giulio Racah’s
famous lectures on continuous groups. The latter half of this chapter is biased in
favor of those students of chemistry or physics who will study quantum
mechanics.

Appendix I is a convenient reference for some useful results from that area of
real analysis often referred to as advanced calculus. Appendix II contains an
extremely sketchy discussion of the concept of measure and of the Lebesgue
definition of integration, as well as a collection of several important theorems
from functional analysis for the reader who is interested in seeing how some of
the results given in the text, especially those of Chapters 4 and 5, can be
generalized. However these advanced theorems are never used in the text itself.

Naturally, very little new will be found in a text of this type covering these
topics in applied mathematics for the beginning graduate or advanced under-
graduate student. Each subject covered is treated more extensively in works
devoted to that subject alone. This book provides the student with a single,
unifi~d, understandable presentation of the material.

Unfortunately, when a text is developed from so many different sources over a
period of several years, it is not always possible to recall exactly the sources used
and to quote them. I have tried to indicate my major references at the end of
each chapter and in the bibliography. Nearly four hundred years ago Sir Francis
Bacon in his Nuovum Organum charged: *. .. let a man look carefully into all
that variety of books with which the arts and sciences abound, he will find
everywhere endless repetitions of the same thing, varying in the method of
treatment, but not new in substance ....” Indeed it is often so in the
mathematical literature that the original proofs and discussions given by the
great classical mathematicians are so clear and beautiful and that subsequent
works have essentially copied them. This is not a criticism of lesser authors since
it would serve no purpose to concoct an original proof at the expense of
preciseness or clarity. The present text is not free from such charges of
nonoriginality in several key discussions.

I have tried to keep my .personal prejudices as a theoretical physicist from
coming through too blatantly in the selection and presentation of subject matter,
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although it is clear that I have yielded to temptation on several occasions.
especially in the last sections of Chapter 9.

Finally I thank Brian Cheng-jean Chen, Gerald L. Jones, and William D.
McGlinn for discussions of various points during the writing of this text and my
students, who have endured the preliminary versions of the notes used for this
course, for their questions and suggestions. I also thank Sharon Duram and
Eleanor Klingbeil, who typed the bulk of the lengthy first draft, and Jo
Robertson, who typed and retyped the extensive revisions. Naturally, those
errors that remain are mine, and I welcome any comments on, corrections to. or
criticisms of this text.

JUNE, 1974 JAMES T. CUSHING
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1 | Linear Vector Spaces

1.0 INTRODUCTION

As we will repeatedly stress throughout the text, many of the concepts we will
use are simply generalizations of those already encountered in ordinary three-
dimensional vector analysis. Consider a three-vector x = (xi, X2, x3), where xi, xz,
x5 are the components of x along three mutually orthogonal Cartesian axes. We
say that x is a vector in E; (i.e., three-dimensional Euclidean space). Suppose we
wish to find an x such that

anXi+anx;+aisxa= b
A21X1+ A22X2+ A23X3= b, (1.1)

a1 X1+ anXa+anxs=b;

Such systems of inhomogeneous linear equations are studied in elementary
algebra. '

Let us state some results for these systems by way of review. The reader who is
unfamiliar with the following results will find proofs outlined in Problem 1.1 at
the end of this chapter. If we define a quantity A as

A Q2 Qs
A=| ax ax a
Az A3z Qss

=a,1(A22033— A32029) — A12(A2:1Q33— Q31 A23) + A13(A21G32— A31022) (1.2)



