THE DESIGN
AND DESCRIPTION
OF COMPUTER
ARCHITECTURES

SUBRATA DASGQUPTA ~




THE DESIGN
AND DESCRIPT

ON

OF COMPUTE

R

ARCHITECTURES

SUBRATA DASGUPTA

University of Southwestern Louisiana
Lafayette, Loulslana

A Wiley-Interscience Publication
JOHN WILEY & SONS

New York Chichester Brisbane Toronto

Singapore



UNIX Is a trademark of Bell Laboratories.

ADA is a registered trademark of the U.5.
Government ADA Joint Program Office.

Copyright © 1984 by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work
beyond that permitted by Section 107 or 108 of the
1976 United States Copyright Act without the permission
of the copyright owner is unlawful. Requests for
permission or further information should be addressed to
the Permissions of Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data:
Dasgupta, Subrata.
The design and description of computer architectures.

‘“A Wiley-Interscience publication.”

Bibliography: p.

Includes index.

1. Computer architecture. 2. System design.
I. Title.

QA76.9.A73D36 1984 621.3819'58 83-21826
ISBN 0-471-89616-0

Printed in the United States of America

10987654321



THE DESIGN
AND DESCRIPTION
OF COMPUTER
ARCHITECTURES




TO
MY PARENTS
AND
MY PARENTS-IN-LAW



PREFACE

The design of computer architectures, an aspect of the broader discipline of
computer design, has traditionally suffered from two major drawbacks.
First, the idea of storing the architectural design in some formal representa-
tion has remained largely outside the mainstream of architectural thought
and practice; second, in the absence of a theoretical or formal framework,
architectural designs have conventionally been evaluated with respect to
both logical correctness and performance only after they have been imple-
mented as physical systems.

These are major shortcomings for any field that lays some claim to being
called a discipline. Their seriousness will be evident at one time or another
to all those involved with computer architecture, whether as a designer,
teacher, or theorist. For their consequences are a compendium of undesir-
able characteristics that are commonly encountered by all sectors of the
architectural community:

1. An inability to communicate the design in a precise, unambiguous
way.

2. The invariable presence in the design of features that are undefined
and hence subject to erroneous interpretation.

3. Aninability to understand the architecture, both from a systems point
of view and at the level of minute detail.

4. A low level of confidence in the logical correctness and reliability of
the design.

5. A basic inability to manipulate the design either for the purpose of
exploring alternative choices for some part of the architecture or with
the intent of extending or modifying an existing design.

Indeed, some or all items from this list will appear familiar to all those who
are involved in the design of complex systems, such as the software de-

vii



viii PREFACE

signer, urban planner, or (civil/structural) architect. In the area of software
design, many of these characteristics were symptomatic of a fundamental
weakness in our understanding of the nature and complexity of software
in the late 1960s. This weakness prompted the development of a series
of techniques, concepts, and ideas, largely pioneered by E. W. Dijkstra,
C. A. R. Hoare, N. Wirth, and others, that in recent times have nucleated
into a discipline dubbed ‘‘software engineering.”’ In urban and environmen-
tal planning and architecture, the response to this problem of unmastered
complexity is seen in the form of a plea for rational design, even a
mathematization ~f design, notably exemplified by Christopher Alexander’s
influential monograph Notes on the Synthesis of Form (1964). More gener-
ally and in some ways more interestingly, with the recurring observation of
the same problem of design in diverse fields, there has emerged from the
1960s onward a vigorous group of design theorists whose focus is the design
process itself. For computer scientists, the pioneering and still most il-
luminating work in this respect must remain Herbert Simon’s beautiful little
book The Sciences of the Artificial (1981).

Computer architecture does not yet, apparently, face the kind of crisis
that confronts software design or urban planning. Thus, the attempt to de-
velop a theory or methodology of computer architecture design is less
motivated by any perceived crises in this field than by a deep sense of
dissatisfaction (on the part of this writer, at any rate) with the state of a
design discipline that is ridden with flaws.

There are, however, indications that because of startling advances in
technology, computer architects may well in the very near future face the
problem of unmastered complexity so familiar to software designers. For
instance, the development of large-scale integration (LSI) and (now) very
large-scale integration (VLSI) semiconductor technology has resulted in a
potential for processor chips of unprecedented gate complexity. Thus com-
puter architects are already grappling with design problems that are quite
different from those of a decade ago, simply because the technological con-
straints have changed so rapidly (Treleaven [1980]).

Furthermore, as an outcome of the large-scale availability of cost-
effective microprocessors, the possibilities of distributed systems, net-
works, and multiprocessors are now widely recognized. Thus computer
structures of unprecedented organizational complexity are being studied,
designed, and experimented with.

Finally, these same technological changes have made the vertical migra-
tion of operating system functions and language primitives down to the
microcode level a viable system implementation option. Thus micropro-
grams are likely to become progressively larger and more complex, with
an attendant increase in functionality and complexity of the overall archi-
tecture.

We are thus well advised to anticipate the emergence of far greater com-
plexity in the architectural domain than might seem to exist at present.



PREFACE ix

This monograph is about the methodology of design of computer architec-
ture. The term ‘‘methodology’’ is used here in its narrowest sense of ‘‘the
study or description of the methods or procedures used in some activity”’
(Bullock and Stallybrass [1977], pp. 387—-388)—in this case, computer ar-
chitecture. In particular, this book is concerned with a particular approach
to the design of architectures, based on the use of symbolic descriptions.

Style, according to H. A. Simon, is one way of doing things chosen from a
number of alternative ways. It is normally identified by characteristics of the
objects designed—as, for example, when we talk about a given computer
processing a pipeline style of architecture on the basis of certain characteris-
tics of information flow through the hardware during the course of a compu-
tation. As Simon has pointed out, it may also arise from differences in the
design process. A good example from the software domain is provided by
D. L. Parnas (1972) who, in a famous paper, showed that depending on the
criteria used for decomposing systems into modules, one may obtain a soft-
ware product organized in two quite different ways. The design process
leaves its imprint on the final product; the alternative modularization tech-
niques represent distinct design styles.

From this viewpoint it may be fair to say that the focus here is also on a
particular style of architectural design, a style characterized mainly by the
use of symbolic description languages for the specification of architecture at
different, significant levels of abstraction.

Needless to say, it is not my place to advocate this approach to thinking
‘about and designing computer architectures as the style to adopt. It is my
objective, however, to promulgate the view that a sine qua non for the
emergence of computer architecture as a design discipline is the elimination
of the flaws described at the beginning of this preface. With a symbolic
description language, the activities of designing, evaluating, modifying, and
understanding an architecture can be conducted quite apart from Jlargely
independent of, and preferably prior to the task of implementing the ar-
chitecture in physical hardware. The proposed design style, as well as sev-
eral other issues of architectural design discussed in this monograph, is
intended as a contribution to such a discipline of computer architecture.

A few words must be said about the languages defined and used in this
book. These languages (which, for reasons that will be evident later, form
part of what I call the S* family) represent the outcome of work carried out
over the past few years by this author and his students, on the development
of a family of languages for the design, description, and verification of com-
puter architectures and microprograms. Indeed, the present monograph is
largely the culmination of this earlier work. Thus, a detailed discussion of
the S* family as part of the present subject matter seemed both natural and
necessary.

At the same time I must add a disclaimer. This monograph must not be
interpreted as advocating these particular languages in preference to others
that have been proposed in the literature. The rationale underlying the de-



X PREFACE

sign of the S* family has been stated in earlier publications and is repeated
here for the sake of completeness. It must remain for the reader to assess the
family and decide on its usefulness relative to alternative proposals. Need-
less to say, as the history of programming languages amply illustrates, much
experience must be gained with the application of design languages before
any proper assessment can be achieved. At this time of writing, probably the
only architecture description (or microprogramming) language that has been
adopted to any degree by users outside the immediate locus of its invention
is ISPS (Barbacci et al. [1978]). One of the reasons for devoting consider-
able space in this book to a detailed discussion of the S* family is the hope
that others will seek to apply it, criticize it, and provide the necessary insight
for the derivation of better and more elegant languages in the future.

SuBrAaTA DASGUPTA

Lafayette, Louisiana
November 11, 1983



ACRNOWLEDGMENTS

I am grateful for having had the opportunity of presenting some of the ideas
discussed in this book in seminars at various universities and conferences
over the last two years.

Parts of the manuscript were read by Werner Damm, Alan Wagner,
Joseph Linn, Prasenjit Biswas, Harold Lorin, and Marius Olafsson. I thank
them for their comments. I am also indebted to Marius Olafsson for allowing
me to quote excerpts from his thesis.

At one time or another, I have had discussions with many colleagues and
students on the topics of computer architecture, microprogramming,
verification, and design methodology, many of which have influenced the
shape of this book. In particular, I remember with pleasure conversations
with Maurice Wilkes, Werner Damm, Michael Flynn, Alan Wagner, Marius
Olafsson, Bruce Shriver, and Joseph Linn. Needless to say, none of the
above are responsible for the opinions and ideas expressed in this book.

I am extremely grateful to Judith Abbott, who typed the major part of the
book and to Cathy Pomier and Phil Wilsey for their assistance in completing
the preparation of the manuscript. I must also thank James Gaughan and the
staff of Wiley-Interscience for their invaluable editorial help.

My thanks to the Institute of Electrical and Electronics Engineers, the
Association for Computing Machinery, AFIPS Press, John Wiley and Sons,
Academic Press, and Springer Verlag for granting me permission to repro-
duce diagrams and excerpts from their publications.

Finally, a very personal note of gratitude to my parents, my parents-in-
law, and to my wife for their love, support, and understanding over the
years.

S.D.

i



THE DESIGN
AND DESCRIPTION
OF COMPUTER
ARCHITECTURES




CONTENTS

CHAPTER 1 WHAT IS COMPUTER ARCHITECTURE?

1.1
1.2
1.3
1.4

Introduction 1

Levels of Architecture 4

Conceptual Integrity of Architectures 8
Bibliographic Remarks 10

CHAPTER 2 THE INFORMAL DESIGN PROCESS

2.1
2.2

Architecture as Craft 11
Bibliographic Remarks 16

CHAPTER 3 THE FORMAL DESIGN PROCESS

3.1
3.2
33
34

Introduction 18

What Is Methodology? 19

The Limits of Formal Design 22
Bibliographic Remarks 23

CHAPTER 4  ISSUES IN LANGUAGE DESIGN

4.1
4.2
43
4.4
4.5
4.6
4.7

Introduction 24

Levels of Abstraction 25

The Operational-Functional Dichotomy 28
Procedural and Nonprocedural Descriptions 30
Structure and Behavior 32

The Influence of Programming Languages 37
Bibliographic Notes 38

11

18

24

Xiii



Xiv CONTENTS

CHAPTER 5 A LANGUAGE FOR DESCRIBING COMPUTER
ARCHITECTURES 40

5.1 Toward a Family of Design Languages 40

5.2  An Overview of the S* Family 41

5.3 Data Types and Data Objects in S¥*A 43

5.4 The Specification of Action in Architectural
Descriptions 46

5.5 Modular Descriptions 48

5.6 Mechanisms and Systems 50

5.7  Asynchronous Concurrent Systems 55

5.8 Synonyms 57

5.9 Mechanism Types 58

5.10 Bibliographic Notes 61

CHAPTER 6 FORMAL DESIGN OF A MICROCODE LOADER 62

6.1 The Problem 62

6.2 An Informal Design 64

6.3 A Formal Description 66

6.4 A Diversion: Floyd-Hoare Correctness Proofs 70
6.5 Derivation of a Correct Mechanism 73

6.6 Bibliographic Notes 84

CHAPTER 7 AN ASYNCHRONOUS ARCHITECTURAL SYSTEM 85

7.1 Overview of the System 85
7.2 Formal Description 86
7.3 Bibliographic Notes 91

CHAPTER 8 ON THE CORRECTNESS OF ASYNCHRONOUS
ARCHITECTURAL SYSTEMS 92

8.1 Introduction 92

8.2 Principles of the Owicki-Gries Technique 93
8.3 Application to Architectural Verification 95
8.4 Verification of DATAFLOW 98

8.5 Bibliographic Remarks 109

CHAPTER 9 TOWARD HIGH-LEVEL MICROPROGRAMMING 110
9.1 Problems of High-Level Microprogramming 111

9.2 Some Approaches to High-Level Microprogramming 119
9.3 Bibliographic Remarks 125



CONTENTS

CHAPTER 10 A MICROPROGRAMMING LANGUAGE SCHEMA

10.1

Data Types and Data Objects 127

10.2 Synonyms 131

10.3
10.4

Executional Statements 132
Bibliographic Remarks 139

CHAPTER 11 A PRACTICAL MICROPROGRAMMING LANGUAGE

11.1
11.2
11.3
11.4
11.5
11.6

Introduction 140

Architecture of the QM-1 142

Description of S*(QM-1) 158

A Programming Example in S*(QM-1) 170
The Significance of S*(QM-1) 171
Bibliographic and Other Remarks 172

CHAPTER 12 ON STYLE IN COMPUTER ARCHITECTURE

12.1
12.2
12.3

12.4
12.5
12.6

Introduction 174

Style Induced by Architectural Features 176
The Influence of Architectural Style on the Design
Process 180

The Influence of Implementation Style 184
Architectural Design Style 185

Bibliographic Remarks 190

CHAPTER 13 THE OUTER ENVIROMMENT

13.1
13.2
13.3
13.4

Introduction 192

Ordering Decisions in Exoarchitectural Design 193
Characterizing the Outer Environment 197

Other Aspects of the Outer Environment 210

CHAPTER 14 DESIGN OF AN ARCHITECTURE: A CASE STUDY

14.1
14.2
14.3

Toward a Discipline of Computer Architecture 212
Two Points to Ponder 214
Design of the QM-C Architecture 216

EPILOGUE

APPENDIX A A DEFINITION OF THE ARCHITECTURAL DESCRIPTION

LANGUAGE 5°A

XV

127

140

174

192

212

246

249



XVi CONTENTS

APPENDIX B SYNTAX AND SEMANTICS OF THE
MICROPROGRAMMING LANGUAGE SCHEMA 5* 275

REFERENCES 281

INDEX 293



ONE

WHAT IS5 COMPUTER
ARCHITECTURE?

1.1 INTRODUCTION

Precisely what constitutes computer architecture has been a point of some
debate in computer science. The crux of the problem appears to be the
complex, hierarchic nature of computers. They are, first of all, complex in
Simon’s (1981) sense—they are composed of a large number of parts that
interact in a nontrivial way; and hierarchy is a necessary way of organizing
such a complex system. This is illustrated schematically by Fig. 1.1, where
the individual system parts a through g are conceptually, logically, or physi-
cally (depending on the actual system) organized into two higher hierarchic
levels. The relationship between adjacent levels is one of ‘‘consists of.”’
Thus, o consists of A, B, and C; A consists of a, b, ¢, and so on.

In the case of computer systems, this kind of hierarchy is seen in the way
we divide information into chunks when we design, describe, or understand
such systems; thus, we talk of a system being composed of a processor, a
memory, and a control unit. The processor in turn may consist of a local
store, an arithmetic logic unit (ALU), multiplexers, and buses, while the
control unit may be composed of a control memory, a set of specialized
registers and a sequencer, and so on (Fig. 1.2).

A second kind of complexity arises from the many different levels of
description that exist for computers. As pointed out by Bell and Newell
(1971), these levels are not equivalent in the sense that anything said one
way can be said another. On the contrary, each description level performs a

1



2 WHAT 15 COMPUTER ARCHITECTURE?

>CONS|STS OF

a b c d e f g
Figure 1.1 Hierarchy of several interacting components.

function that cannot be performed adequately by another. This is illustrated
schematically by Fig. 1.3. The essential relationship between levels is one of
abstraction or, conversely, refinement. Thus, level 1 is an abstraction of
level 2; conversely, level 2 is a refinement of level 1.

A third kind of complexity arises when a system is constructed level by
level. System complexity in this context appears—at least in some cases—
to be the effect rather than the cause of multiple construction levels, since a
system may have been designed or constructed in this form for reasons
having nothing to do intrinsically with the management of complexity. The
resulting system appears complex as a consequence of its many levels. Note
that the relationship between levels here is one of ‘‘is implemented on’’ or
‘“‘is constructed on’’ (Fig. 1.4).

A computer system, then, is complex and hierarchic in a number of differ-
ent ways: it is composed of a large number of parts that interact in a nontriv-
ial ways; it is rich in the variety of levels at which it may be meaningfully
described; and it may possibly be constructed as a many-layered system.

“SYSTEM”

CONTROL
UNIT

MEMORY PROCESSOR

LOCAL ALU BUSES MULTI- CONTROL REGISTERS SEQUENCER
STORE PLEXERS MEMORY

Figure 1.2 Hierarchy in a computer hardware system.



