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PREFACE

Two-point boundary value problems associated with systems of linear
and nonlinear ordinary differential equations occur in many branches of
mathematics, engineering, and the various sciences. In these problems,
conditions are specified at the endpoints of an interval, and a solution of the
differential equations over the interval is sought which satisfies the given
endpoint conditions. Generally the equations.cannot be solved analytically,
so recourse must be made to a numerical approach. In this book we describe,
develop, and exploit one such class of methods; namely, shooting methods.
In a shooting method, a set of values of the unspecified conditions at the
initial point of the interval (“ missing initial conditions”) is assumed, and the
differential equations are numerically integrated to the terminal point
(“shooting ” at the target terminal points). If the computed terminal values
satisfy the specified terminal conditions, the problem has been solved. If
they do not (the normal course of events), the differences between the
computed and specified terminal conditions (the “miss distances”) are used
to adjust the missing initial conditions. If the differential equations and
boundary conditions are linear, the adjustment need only be made once,
but if the differential equations or the boundary conditions are nonlinear,
the adjustment of the missing initial conditions is an iterative process.

In the past, shooting methods were regarded with a certain amount of
suspicion, chiefly for two reasons. The first had to do with the lack of a
theoretical foundation for the iterative process just described, with the
result that conditions under which the iterative process converged and
estimates of the rate of convergence were not available. The second reason
concerns the apparent inability of shooting methods to handle numerically
sensitive (unstable) problems.

We first became aware of the lack of an adequate theory when we tried to
reconcile some anomalous results produced by the Goodman-Lance method
of adjoints, one of the best known and widely used shooting methods. Once
we discovered that the Goodman-Lance procedure was a concrete realization
of the abstract Newton-Kantorovich method, we had in hand a satisfactory
theory of convergence and error estimates for it, and, subsequently, for other
shooting methods as well. Then we were able to devise extensions of shooting
methods, such as continuation, which enabled them to handle numerically
sensitive problems. In this book we develop the basic methods and their
extensions, along with the appropriate theory, and illustrate the techniques
by applying them to a variety of problems drawn from practice.

Our book is intended for applied mathematicians and engineers, students
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and professionals, who are familiar with the numerical integration of initial
value problems, and who want to solve two-point boundary value problems
with a minimum of problem preparation. Since we believe that computing
is the art of the possible, we give the methods in sufficient detail that the
reader can generate his own programs. A well designed shooting method
program will be independent of the particular problem to be solved, with
the exception of the subroutine into which the right hand side of the set of
ordinary differential equations to be solved is inserted. Our methods work
just as well on small machines as on large ones.

While our main concern is to produce working tools for the applied
mathematician and engineer, we do not think that these tools can be used
properly without an understanding of the underlying theory. We have
chosen to develop the necessary theory in the framework of functional
analysis, ' following Kantorovich (who first exploited the application of
functional analysis to applied mathematics and numerical analysis), Collatz,
and others. We have found that functional analysis unifies seemingly dis-
parate results, and that it often furnishes valuable geometrical insight
through which a known procedure can be better understood, and new
techniques developed.

Since we realize that many of our readers may not be acquainted with the
concepts and terminology of functional analysis we have attempted through-
out the text to restate key phrases and ideas in more familiar terms. In
addition, we have included an Appendix in which the various concepts and
terms are defined rigorously. Occupying, as we do, the middle ground
between the mathematician and the engineer, we hope our stance of genera-
ting and explaining practical methods with sufficient theoretical underpinning
will bridge the gap between their disciplines.

* While our emphasis is on shooting methods, we also devote space to
other methods, in particular, quasilinearization and finite difference methods,
which have wide applicability in the computer solution of two-point bound-
ary value problems. We regret not having been able to include still other
approaches (invariant imbedding, for example), but we believe that the
methods in this book will give the analyst a repertoire of techniques which
should enable him to solve numerically the majority of two~point boundary
value problems he is likely to encounter. This, in fact, has been our exper-
ience for we ourselves have solved almost every one of the numerical
examples presented in this text by at least one, and often several, of the
methods discussed.

SANFORD M. ROBERTS
Houston, Texas and JEROME S. SHIPMAN
Gaithersburg, Maryland
Spring 1971
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Chapter 1

INTRODUCTION

The purpose of this book is to describe in some detail various “shooting”
and related methods for the numerical solution of two-point boundary value
problems for linear and nonlinear ordinary differential equations. Two-point
boundary value problems occur in a number of areas of applied mathematics,
theoretical physics, and engineering, among them boundary layer theory,
the study of stellar interiors, and control and optimization theory. Since it is
usually impossible to obtain analytic (closed-form) solutions to the two-point
boundary value problems met in practice, these problems must be attacked
by numerical methods. The methods treated in this book have enabled
applied mathematicians, programmers, and engineers ' who are not specialists
in two-point boundary value problems to obtain numerical solutions to a
wide variety of problems, within the time limits so often placed on their work.

In contrast to initial value problems for ordinary differential equations in
which all the conditions are specified for one value of the independent
variable (the initial point), two-point boundary value problems, as the name
implies, have the property that conditions are specified at two values of the
independent variable (the initial point and the final point; collectively, the
boundary points). *

This apparently minor change can lead to profound changes in the
behavior of the solution of the differential equations. It is not hard to give
examples of linear differential equations that possess unique solutions as
initial value problems, but which may have no solution, a unique solution,
or an infinite number of solutions as two-point boundary value problems.
For example, the initial value problem

Jh= Qoo MO =Cra o (0) =00

has the unique solution y(x) = ¢, cos x+ ¢, sin x for any set of values ¢;, ¢,.

* Multipoint boundary value problems, in which data are specified at more than two
values of the independent variable, are sometimes encountered. Methods for handling
such problems are not treated at length, but it is pointed out how certain of the
methods can be generalized to handle multipoint boundary value problems.
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However, the boundary value problem
Jty=0, J0=1 “ym=0
has no solution; the problem »
J+y=0, y0) =1 =0
has the unique solution y(x) = cos x— (cotan 2)sin x; while the problem
j+y=0, y0) =0, ym) =0

has an infinite number of solutions y(x) = Bsin x, where B may have any

value.
In the examples above, values of the solution at the two ends of the interval

were specified, and different combinations of end points and values of the
solution led to different conditions of existence and uniqueness of solutions.
The specification of the derivative of the solution, rather than the value of
the solution itself, may also lead to different conclusions with regard to the
existence and uniqueness of solutions of two-point boundary value problems.
Consider, for example, the differential equation

y+f(,9,%) = 0,

where f(y, y, x) is continuous in the strip D: —00 £ y £ 0, —00 = y £ o0,
a £ x £ b, and f(», y, x), satisfies the Lipschitz condition

1fO, 9, %) —f(,u,x)| < K|y —ul + L|y —l,

where K and L are positive constants and y, y, 4, # are points in D. Then
Bailey et al. [1] show that the existence of a unique solution to the two-point
boundary value problem y(a) = 4, y(b) = B can be guaranteed over an
interval [a, b] twice as long as the interval for which existence and uniqueness
obtain for the problem y(a) = 4, y(b) = m.

In view of the complicated behavior that solutions of two-point boundary
value problems can exhibit, it should not be surprising that the theory of the
existence and uniqueness of solutions of these problems is in a less satis-
factory condition than the corresponding theory for initial value problems.
And it should be expected that the numerical solution of a two-point
boundary problem for a given ordinary differential equation will in general
be a more difficult matter than the numerical solution of the corresponding
initial value problem.

There now exist a number of efficient methods for the step-by-step numeri-
cal integration of initial value problems, and it is assumed that the reader is
familiar with the use of standard one-step methods such as Runge-Kutta and
multistep methods such as Hamming’s modification of Milne’s method.
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These methods have in common that the solution is computed at a succession
of values of the independent variable, say x;, x,, X3, . .. , where Xo is the
initial point. The initial conditions at x, contain sufficient information for
the solution to be computed at x, ; and so on. (The progression of the solu-
tion from x, to x; to x,, etc., explains why initial value problems are some-
times called “marching” problems.) Iteration at the points x, is sometimes
used to improve the numerical accuracy, but no “guessing” is involved
because the method has already furnished a good first approximation. In
two-point boundary value problems, on the other hand, there is not sufficient
information at the initial point to start a step-by-step solution; hence a way
must be found to determine the missing initial conditions, or an approach
other than step-by-step integration must be used. Also, iteration is more
likely to be an essential feature of a method for the solution of two-point
boundary value problems, and it is usual that missing initial conditions or
even solution profiles must be guessed, with no other a priori knowledge.

Two-point boundary value problems have been attacked by a variety of
techniques, among them:

1. Interpolation methods. Solutions of the differential equations are found
by numerical integration for sets of values of the missing initial conditions.
These solutions will not in general satisfy the prescribed boundary conditions.
The correct values of the missing initial conditions are then found by inverse
interpolation [2, 3].

2. Variational methods. The two-point boundary value problem is
replaced by the variational problem of minimizing a certain integral, and
the resulting variational problem is solved by the Rayleigh-Ritz methods
(2, 4].

3. Method of collocation. The solution of the two-point boundary value
problem is represented by a function of several parameters which satisfies
the boundary conditions for any set of values of the parameters. The approxi-
mate solution is substituted in the differential equations and the parameters
are determined by the satisfaction of some error criterion [2].

4. Picard’s method. The two-point boundary value problem is put in a
form symbolically represented by x = F(x). A sequence of approximate
solutions x™ is developed by the process x™ = F(x™~ 1)) which converges
to the solution of the original problem under certain conditions [1-3].

5, Discrete methods. The derivatives occurring in the differential equa-
tions are replaced by appropriate finite differences, and the solution to the
two-point boundary value is sought at discrete values of the independent
variable. The effect is to replace the original problem by the problem of
solving a finite number of algebraic or transcendental equations [2-6].
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6. Quasilinearization. In this method, applicable only to two-point
boundary value problems for systems of nonlinear ordinary differential
equations, the original nonlinear problem is replaced by a sequence of more
easily solved linear problems whose solutions converge under appropriate
conditions to the solution of the original problem [7, 8].

7. Shooting methods. They take their name from the situation in the
two-point boundary value problem for a single second-order differential
equation with initial and final values of the solution prescribed. Varying the
initial slope gives rise to a set of profiles which suggest the trajectory of a
projectile “shot” from the initial point. That initial slope is sought which
results in the trajectory “hitting” the target; that is, the final value [1, 6, 8-11].

This hit-or-miss method is of course unsuitable for the solution of two-
point boundary value problems on high-speed digital computers. What is
needed is a systematic way to vary the missing conditions based on the
amount by which the final values are missed. The shooting methods we are
concerned with have this property. In fact, linear problems can be solved by
shooting methods without iteration, and the iterations necessary for non-
linear problems can be shown to converge under appropriate conditions.

For nonlinear differential equations, shooting methods have certain advan-
tages for the problem solver. First of all, the methods are quite general and
are applicable to a wide variety of differential equations. It is not necessary
for the applicability of shooting methods that the equations be of special
types such as even-order self-adjoint. Second, shooting methods require a
minimum of problem analysis and preparation. It is relatively easy to imple-
ment shooting methods on digital computers using standard subroutines for
the numerical integration of ordinary differential equations, solutions of
linear algebraic equations, etc. With a properly written code, only one
subroutine need be altered from problem to problem, the one in which the
right-hand side of the system of differential equations written in a standard
form is entered. All other parts of the code will handle automatically any
problem from a broad class.

Despite their advantages, shooting methods, like all methods, have their
limitations. Shooting methods sometimes fail to converge for problems which
are sensitive to the initial conditions. In some problems modest changes in
the initial conditions result in numerical difficulties such as machine overflow.
Procedures such as continuation and reorthogonalization have been devel-
oped which extend the usefulness of shooting methods, and they are
discussed.

However, problems are sometimes encountered in practice which cannot
be solved even by the extended shooting methods. For this reason we have
included a brief treatment of finite difference methods, one of whose virtues
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is their capability of handling numerically sensitive problems. We also
discuss quasilinearization, which has been successfully applied to the prac-
tical solution of two-point boundary value problems.

Several apparently different shooting methods have been presented in the
literature, often as purely formal manipulations with little attention to the
conditions under which the methods work. Our emphasis here is on the
derivation of the various methods, their interrelationships, and the demon-
stration that they are all realizations of a generalization of the familiar
Newton-Raphson method for the solution of equations. Once the shooting
methods are shown to be a kind of Newton-Raphson method, conditions for
convergence, rates of convergence, and error estimates can be derived. In
addition, we are concerned with the practical computer implementation of
the techniques, and the solution of problems that arise in scientific and
engineering applications.
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Chapter 2

SHOOTING METHODS

2.1. INTRODUCTION

In this chapter we discuss the statement of the two-point boundary value
problems as dealt with in this book; namely, in terms of a system of
first-order ordinary differential equations. The reduction of higher-order
systems of differential equations to a system of first-order differential equa-
tions is described. A brief description of each of the shooting methods is
given.

2.2. TWO-POINT BOUNDARY VALUE PROBLEM STATEMENT

Two point-boundary value problems are problems in which, for a set of
possibly nonlinear ordinary differential equations, some boundary condi-
tions are specified at the initial value of the independent variable, while the
remainder of the boundary conditions are specified at the terminal value of
the independent variable. The boundary conditions are therefore split
between the two points, the initial and terminal values of the independent
variable.

" In this book, by two-point boundary value problems we mean problems
with the following characteristics:

1. n first-order ordinary differential equations to be solved over the interval
[to, /], where # is the independent variable, #, is the initial point, and ¢, is
the final point.

2. r boundary conditions specified at the initial value of the independent
variable.

3. (n —r) boundary conditions specified at the terminal value of the
independent variable.

As a rule, the differential equations will be nonlinear, but linear equations
will play an important role in the numerical methods to be developed.

Problems originally expressed as higher-order nonlinear ordinary differ-
ential equations can be reduced to a system of first-order nonlinear ordinary
differential equations as described in Section 2.3.



(2.3) SHOOTING METHODS -

In this book the two-point boundary value problem is written as follows:
The set of n nonlinear ordinary differential equations is

yt = gi(yl.,yh e !ymt)’ 1= 1:2’ ceeslly (22.1)

where the differential equations can be explicitly solved for the derivative,
the g; functions are assumed to be twice differentiable with respect to each
of the dependent variables y;, # is the independent variable, and y; = dy;/dt.

The initial boundary conditions at the initial independent variable 7, are

yi(to) = ¢, T PR gk o 2.2.2)

The terminal boundary conditions at the terminal value of the independent
variable 7, are

Vitp) = ¢i,.» m=12...,n—r. (2923)

More complicated boundary conditions can be given, but they usually
can be reduced to the statement above or can be handled with modest
changes in the shooting procedures. See Chapter 3, Section 3.8. Moreover,
problems are sometimes encountered in which conditions are specified at
more than two points (multipoint boundary value problems), but they are
not treated here at length. See Chapter 8, Sections 8.7 and 8.8.

This statement of the problem assumes that the equations and variables
can be renamed or reordered so the first r variables will have boundary
conditions specified at the initial independent variable.

The subscripts on the specified terminal conditions are written i, to allow
for the possibility that the set of variables specified at the initial value of the
independent variable and the. set of variables specified at the final value of
the independent variable may not be disjoint. For example, let the number
of equations n = 6; let the initial boundary conditions be specified for
¥1(to), y2(te), and y,(f,); and let the terminal conditions be given for
¥2(tp), ya(t;), and ye(t;). Under these circumstances, y, is fixed at both the
initial and final points; therefore the sets of variables specified at the initial
and terminal points are not disjoint. Note that ys is not given at either the
initial or terminal points. The indexing for the terminal conditions is
therefore iy = 2, i, = 4, i3 = 6, 50 y;,(2,) is y,(t;), y:,(ts) is yu(t;), and
Vi,(ty) is ye(ts). =

It should be mentioned here that the indexing for both the initial and
terminal conditions is a convenient device to state the two-point boundary
value problem concisely for purposes of discussion. In practice we do not
rename or reorder the equations every time the boundary conditions are
changed. For a computer solution of the two-point boundary value problem,
we indicate in the input data to the program which variables are specified
at the initial and final values of the independent variable and which variables
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are not specified. The computer program then tests each variable against the
input data and treats each variable accordingly. Thus the “bookkeeping” of
the variables specified at the initial and terminal values of the independent
variable is handled automatically by the code.

2.3. REDUCTION OF nth-ORDER EQUATION

It is convenient to reduce all higher-order differential equations to a
system of first-order equations. From an analysis point of view and from a
computer program point of view, we can then focus our attention on essen-
tially one class of problem.

The method for doing this is standard: Given a single nth-order nonlinear
ordinary differential equation

YO = g,y y?, ...,y 0,0,
where
»® = @,
art

we define a system of » first-order nonlinear differential equations as follows:

Y=

y2 =y =y,

..}’3 = :f’z = j =y?,

8 s yn—i e s iy y(n—l)’

where
Vi = dy,/dt.

The y™(t) equation is therefore replaced by the system of n first-order
nonlinear ordinary differential equations

Vn =y(yl’y2"'- ’ymt)9
Vu-1 = Vw

}"n—z = Vn-1»

Y1 =D
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Thus any system of higher-order ordinary differential equations can be
reduced to a system of first-order ordinary differential equations.

2.4. ANALYTICAL SOLUTION

If the differential equation can be solved analytically, then the two-point
boundary value problem can generally be solved without difficulty. For
linear differential equations the solution of a two-point boundary value
problem reduces to determining the values of the constants from the given
boundary conditions as the solution to a set of linear algebraic equations.

Consider the following example which, because of the simplicity of the
problem, we do not bother to put in the form (2.2.1):

‘:T‘r =y+t, y0)=0, y1)=1
The solution of the homogeneous differential equations is

Vi) = cie'+cze”,
while the particular solution is

(1) = —t.
The general solution is therefore
() = y(O+y,(t) = cie'+ce”' —t.

By the first boundary condition,

¥0) =0=c¢+c,
and, by the second boundary condition,

y(1) =1=cetce” 1.

Solving this set of linear algebraic equations for ¢, and c, gives

RO
e—e~! sinhl’

C1 = —c;=

The general solution is therefore
2sinht
sinh1

i

@) =



