Martingales
and stochastic
integrals

P E.KOPP



Martingales
and stochastic integrals

P.EEKOPP
\_/

CAMBRIDGE UNIVERSITY PRESS
Cambridge

London New York New Rochelle
Melbourne Sydney



Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP

32 East 57th Street, New York, NY 10022, USA

296 Beaconsfield Parade, Middle Park, Melbourne 3206, Australia

© Cambridge University Press 1984

First published 1984

Printed in Great Britain at the University Press, Cambridge
Library of Congress catalogue card number: 83-24083

British Library cataloguing in publication data
Kopp, P. E.
Martingales and stochastic integrals.

1. Martingales (Mathematics)
L Title
519.2'87 QA2745

ISBN 0 521 24758 6



For Heather, Anna and Emily



Preface

Martingale theory is one of the most powerful tools of the modern
probabilist. Its intuitive appeal and intrinsic simplicity combine with an
impressive array of stability properties which enables us to construct and
analyse many concrete examples within an abstract mathematical frame-
work. This makes martingales particularly attractive to the student with a
good background in pure mathematics wishing to find a convenient route
into modern probability theory. The range of applications is enhanced by
the construction of stochastic integrals and a martingale calculus.

This text has grown out of graduate lecture courses given at the
University of Hull to students with a strong background in analysis but
with little previous exposure to stochastic processes. It represents an
attempt to make the ‘general theory of processes’ and its application to the
construction of stochastic integrals accessible to such readers. As may be
expected, the material is drawn largely from the work of Meyer and
Dellacherie, but the influence of such authors as Elliott, Kussmaul, Neveu
and Kallianpur will also be evident. I have not attempted to give credit for
particular results: most of the material covered can now be described as
standard, and I make no claims of originality. The Appendix by Chris
Barnett and Ivan Wilde contains recent work on non-commutative
integrals, some of which is presented here for the first time.

In general I have tried to follow the simplest, thus not always the shortest,
route to the principal results, often pausing for motivation through familiar
concepts. In emphasizing the use of functional analysis I have included a
short description of the required results in Chapter 1, where a detailed proof
of the Dunford—Pettis weak compactness criterion is also provided. This
emphasis on analytic techniques aids the understanding of the analogies
between the ‘commutative and non-commutative’ theories exploited in the
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X Preface

Appendix. A particular example is the treatment, following Neveu, of
conditional expectations via orthogonal projections.

The brief treatment in Chapter 0 of Brownian motion and the Poisson
process is intended to highlight the role of these processes as the traditional
examples which lend substance to the abstract theory. Thus the discussion
is very incomplete and largely intended to motivate later results.

The discussion of the principal features of discrete-parameter mar-
tingales in Chapter 2 is traditional, with somewhat more emphasis on the
convergence theorems than is usual The section on vector-valued mar-
tingales points towards applications in the geometry of Banach spaces. The
final section, on optimal stopping, covers some quite recent results. Chapter
3 relies heavily on the exposition of the continuous-parameter theory given
in [19], the standard treatise for all this and much besides. My choice of
topics is guided by the principal application of the theory, namely
stochastic integrals. The supplement on capacitability follows [18] in an
attempt to give simple proofs of the fundamental ‘theoremes de section’,
which are so often omitted in other texts.

The development of stochastic integrals for semimartingales in Chapter 4
follows [ 66] quite closely. Attention is also drawn to other approaches, e.g.
those in [49] and [62] as well as [17]. A first course such as this does not
allow detailed discussion of applications, and only the merest indications
are given. Nonetheless I hope that this introduction will equip the reader to
master current research literature in the many applications of this fast-
expanding field.
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0

Probabilistic background

This chapter summarises some aspects of measure theory and discusses the
construction of canonical stochastic processes. We then turn to Brownian
motion and Poisson processes to motivate some of the results of Chapters 3
and 4. The development of those chapters is independent of these examples,
but since they inspired much of the general theory some knowledge of their
properties will greatly aid understanding of that theory.

0.1. Maeasure and probability
The following concepts should be familiar, but are collected here
for ease of reference (further details can be found, for example, in [87, [46]).

0.1.1.  Definition: A measure space is a triple (Q, #, P), where Q is a set, %

a og-field of subsets of Q (that is, Qe # and # is closed under the
formation of complements and countable unions) and P is a set function
F—{0, co] which is countably additive: if (4,),,, is a sequence in .# with
Ai(\4;= & when i#j, then P({J2,4)=Y 2 P(4,). We shall deal almost
exclusively with probability spaces, where P has range in [0,1], and also
P(Q)=1.. Unless otherwise indicated, we shall also take (Q, #, P) to be
complete: this means that if Fe# has P(F)=0 and G<F, then G must
necessarily belong to # (and, of course, P(G)=0). If (Q,%,P) is complete,
a sub-o-field ¢ of # (in our framework this implies that Qe%) is said to be
completeif it contains all Fe# with P(F)=0. These sets are referred to as P-
null sets of 4.

It is worth recalling that any probability space (Q, %, P) can be
‘completed’ as follows: the completion (Q, #, P) of (Q, #, P) is defined by
putting Fe# if there exist F,, F, in & with F, cFCF, and P(F,)= P(F,),
and defining P(F)=P(F,)=P(F,). It is clear that (Q, %,P) is then a
complete probability space.



2 Probabilistic background

The completion is closely related to the (Caratheodory) inner measure P,
and outer measure P* induced by P on arbitrary subsets of Q: if 4cQ, let
Py(4):= sup{P(F): FcA, Fe#} and P*(A):=inf{P(F): F2A, Fe#}.
Then & can be characterised as & ={4<Q: P*4)=P,(4)} and the
common value of P* and P, at Ac# defines the extension of P to A.

0.1.2.  Although we shall discuss martingale theory in the context of

complete probability spaces, the reader should be aware that this
restriction precludes discussion of some of the subtler concepts and
extensions of the theory developed in recent years (see [19]), and we thus do
not discuss some of the most interesting facets of Brownian motion, in
particular, which have given rise to these extensions (see [83] for further
discussion of these matters).

Now fix a complete probability space (Q, #, P).

0.1.3.  Definition: A measurable function f: Q—R or random variable

satisfies f ~1(B)e& for all Borel sets B =R. (The Borel o-field Z(R) is
that generated by the open intervals in R.) Two random variables f and g
will normally be identified if the set {weQ: f(w)+# g(w)} is P-null. We say
that f=g as. (almost surely). By abuse of notation we shall identify the
random variable f with the equivalence class {g: f=ga.s.} ; thisis unlikely to
cause any confusion. Thus equations, inequalities, etc., between random
variables are assumed to hold a.s. without explicit mention. A sequence (f,)
of random variables converges a.s. to f (which is then trivially also a random
variable) iff £, (w)—f (w) for almost all w (i.c. excfept possibly on a P-null set).
The vector space of all random variables on (&, &, P) is denoted by
F0:=£°(Q, #,P)

The space of equivalence classes of functions in #° under the
equivalence relation ‘f~g iff f=g a.s.’ is denoted by I?:=1I° (Q, #, P). We
shall treat fI° as if it were a random variable (which need only be defined
a.s. or can take the values 4+ oo or —oo on some P-null set). I can be
equipped with the metric d of convergence in probability: if f, geL?, define
d(f,9)=fomin(1,| f(w) —g(w))dP(w). Then (L°d) is a complete metric
space and d-convergence of a sequence (f,) in I? to f is equivalent to the
statement: for any given £ >0 we can find N such that P{|f,—f| >¢} <e for
all n>N. (Here {|f,—f|>¢} is the set |weQ:|f,(w)—f(w)| =¢}. Abbreviations
of this type will be used freely in the sequel.)

The Banach spaces I7:=I(Q, #, P), for 1 <p < o0, are defined via the
norms || f{|,=(fqlfI? dP)!/?for 1 <p< oo and | f]|, =ess sup,.lf(w). Note
that I?={ fel”:|| |, < oo}. It is not hard to show that norm-convergence of
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a sequence (f;) < ¥ to f (meaning that || f, —f|| ,—0) implies convergence of
(f,) to f in probability.

The integral [ fdP of a random variable feL is called the expectation of f
and denoted by E(f). If we allow E(f) to take the value + oo, generalised
expectations can be defined on LY. (For p=0 or 1<p< oo, LA ={fel’:
f>0}.) Since P(Q)=1, E(f) represents the ‘average value’ or mean of f over
Q. For 1<p<oo, ||f||5 represents the pth moment of f. Of particular
importance is the second moment || f1|3 = ([0l f> dP).

The variance o =E((f—E(f))?) measures the dispersion of f about the
mean E(f), distances being taken in the Hilbert space I2.

Finally, we recall three well-known convergence theorems for sequences in
L'; these will be in constant use throughout this book. For proofs, see [ 77].

Monotone convergence theorem: If (f,) is a monotone increasing sequence in
L' with a.s. limit f and such that (E(f,)) is bounded above, then f is in I} and

I1.f, —f1l;—0. Hence also E(f,)TE(f).

This result extends to LY, if we allow E(f) to take the value + co. In that case
the boundedness condition is superfluous.

Fatou’s lemma: If (f,) is in L% then E(liminf,_,, f,) <lim inf,_, E(f)).

Dominated convergence theorem: If f—f a.s. and there exists g in I! such
that |f,| <g for all n, then fel' and E(f,)>E(f).

Exercises:
(1) Let (f,), n1, and f be functions in I°.
(i) Show that if f,—f in [-norm, then f,—f in probability.
(ii) Show that if f,—f in probability, then there is a subsequence
(f,) converging to f as.
(2) The following basic facts from elementary probability theory will
be useful on occasion. Prove them.
(i) Chebychev’s inequality: Let feI? and teR be given. Then
2
PS>0 <o,
(i) Borel-Cantelli lemmas: if (4,)= % and ) ,P(4,)< oo, then
P((Ur>xA4,)=0. If (4,) are independent events (see 0.1.4)
and Y, P(4,)= + o, then P((),{),si4s)=1.

0.1.4. Conditioning: In attempting to model ‘reality’ by means of the
probability space (2, &, P) we can think of the sets in & as possible
‘events’, and P(A4) is then our assignment of the probability that A occurs.
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Our further assignment of probabilities may be influenced by the know-
ledge that A has occurred (think of the effect of election results upon the
stock market!). We define the conditional probability of Be#, given that A
has occurred, and P(4)>0, as

P(A(\B)

P(4) -

For example, given that a family with exactly two children has at least one
boy, what are the chances both children are boys? Here event A={the
family has at least one boy} has probability 2, assuming that the possible
combinations of sexes are all equally likely. On the other hand, if B= {both
are boys}, then P(B(\4)=P(B)=%, so P(B|4)=4/3=1. (If this result secems
surprising, consider the respective lengths of file indexes of families with at
least one boy, and that of families with two boys. See [31] for a further
discussion of such examples.)

Taking the conditional probability with respect to A amounts to
choosing A as the new sample space (instead of Q) and normalising to make
the probability of A equal to 1. This indicates that all general theorems for
probabilities will have counterparts for conditional probabilities. The
distinctive nature of probability theory lies in the study of independent
events, that is, events 4 and B for which P(4|B)= P(B), or in other words,
where P(A4): P(B)=P(A ﬂB). Here the restriction of our ‘universe’ to A does
not alter the likelihood that B occurs. (See [31; Ch. V] for detailed
discussions.)

Now if fel we can define the conditional expectation of f, given A in &, as
the ‘average value’

P(B|4)=

1
E(fl4)= TA)ff ap
4

of f on A, by analogy with the definitions of E(f) and P(B|A). Note that

1 P(A(\B
E(154)= mledP = (PTO)) = P(B|A).

We can interpret E(f]A4) as our ‘best estimate’ of the values of £, given only
the ‘information’ contained in 4 (and hence in its complement, A°). In a
finite sample space €, this information amounts to knowing whether a
given weQ) belongs to A or not. Now the event 4 generates the o-field
{D,A4,4°Q}. More generally, we can regard any sub-o-field % of # as
containing some information — whether relevant to f or not. This also
enables us to measure the ‘amount of information’ given: the larger the o-
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field the more information it contains (think of the o-fields generated by
ever finer partitions of Q). The conditional expectation E(f|%) will then
represent our ‘best guess’ at the values of £, given only the information in ¥.
The usual construction of E(f|%) for feLl (or even fel3) as the unique %-
measurable integrable function (write L'(%) for L'(\[(%)) such that
fa fdP=jGE.( fI19)dP for all Ge¥, is via the Radon—Nikodym
theorem. This states that if u is a bounded measure on (2, #) which
is absolutely continuous with respect to P (i.e. u(4)=0 whenever Ac.#
satisfies P(4)=0), then there exists a unique XeL' with [, X dP= u(F)
for all Fe#. It is easy to extend this result to bounded signed measures
(countably additive real-valued set functions), where Xel' need no longer
be positive. Apply this with P restricted to the sub-o-field % of # and pon %
defined by w(G)=[;fdP, to obtain X=E(f|%)cL(Q,%,P) such that
MG)=[;XdP for all Ge¥.

We shall deduce the Radon—-Nikodym theorem as a consequence of the
martingale convergence theorem in Chapter 2. For this reason we include in
Chapter 2 a definition of E(f|%) which does not require the
Radon-Nikodym theorem, but is based instead upon the characterisation
of the operator E(:|%) in I? as the orthogonal projection onto the subspace
I2(%). This will exhibit E(f|%) as the ¥-measurable function ‘nearest’ tof in
the least-squares sense. Thus E(f|¥) represents our ‘best estimate’ of f given
only the information contained in %.

0.1.5. The Monotone Class Theorem: Suppose that we wish to prove that
all sets or functions in some class % have a property (*). One way of
doing this is to find a collection €, of sets or functions which ‘generates’ %,
so that each element of ¥ can be constructed from %, using certain
operations. If each element of €, has () and the class of all sets or functions
which have (*) is closed under these operations, then each element of % has
(»). We shall repeatedly use this procedure for g-fields of sets and vector
spaces of measurable functions using the following two versions of the
Monotone Class Theorem (there are many versions with this name: see [19;
Ch. I)):
Let Q be a set, & a collection of subsets of Q, closed under finite
intersections.
(a) Let .#(%) be the smallest collection of subsets of Q which contains &
and satisfies
() QeH(S),
(i) if A,Be#(¥) and A =B, then B\Ae.#(%),
(iii) if (A4,) is an increasing sequence in .#(%), then U,,A,,e./{(y).
Under these conditions .#(.%) is the smallest ¢-ficld containing .
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(b) Let # be a vector space of functions from € to R satisfying
(i) les# and 1,e# for Ac,
(i) if (f,)is an increasing sequence of non-negative functions in »# with
bounded supremum, then sup, f,e#.
Then 4 contains all bounded o(¥)-measurable real functions on .

Proof: (a) If (%) is the o-field generated by &, it satisfies (i)(iii) trivially
and contains &, hence ¢(%) =2 .#(¥). To prove the converse inclusion, it
will be enough to show that .#(%) is closed under finite inter-
sections. For then we can express any countable union of sets (M} in .#(¥)
as follows: set N,={Ji.;M, which is in #(¥) since N,=
Q\(Q\Uf= 1M1)=Q\n:(= 1(Q\Mi)- So by (i), UioilMiz UI:O=1Nk
€M (). Thus #(F) is a o-field.

To prove that .#(%¥) is closed under finite intersections, first set
9, ={Be.#(¥): B ﬂAeJ{(.?) for all Ae#}. Since & is closed under finite
intersections by hypothesis, 2, o.%. We can now check that &, satisfies
(i)(iii) to conclude that 2, = #(%). (Exercise!) Finally, let 2, = {Be.#(¥):
B(\Ae#(¥)for all Ae.#(<)}. Again one may check easily that D, satisfies
(i)(iii). Moreover, if Ae.%, BﬂAeJl(.Sf) for all Be2, = #(¥),s0 ¥ S D,.
Hence 2,=.#(%), and this means that .#(%) is closed under finite
intersections.

(b) Let #={A: 1,e5#}. Then S <., QeM and A is closed under
relative complements (if A,Be#, A<B, then 1g,=15;—1 ,€5#). Also, if (4,)
isan increasing sequence in .#,and A= J2 , A, then 1 ,=sup;, 1,€5¢. By
part (a), # =0(%). Now if f:Q—R is a(F)-measurable and bounded, let
f=f*"—f".Eachoff* and f " is the supremum of a sequence of .#-simple
functions, hence belongs to # by (iii). So fes# as required.

0.1.6.  Stochastic processes and their distributions: A random variable X
induces a probability measure P, on (R, Z(R)), the distribution of
X, by P,(B)=P(X ~(B)) for Be#(R). This Lebesgue-Stieltjes measure is
generated by the increasing right-continuous function F,, the distribution
function of X, by Fy(t)=P{X <t}. If XeL' (Q,%,P), E(X)=[gxdP \(x).
Given a finite sequence X,,X,,...,X, of random variables, let
Z{w)=(X,(0),X,(w),..., X, (w) for all weQ. This defines a measurable
function Z: Q—R", where R" is given the Borel o-field Z(R"). Hence Z
dimensional joint distribution of X,,...,X,, by P,(B)=P(Z *(B)).
We can think of a stochastic process X =(X),g as a family of random
variables indexed by some T = R. (But see also section 3.1.) Usually we take
T=N orasanintervalin R*. If T models the passage of time and X models
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the time-evolution of some observed system, an immediate practical diffi-
culty is that we can only make finitely many observations. Thus we only
observe X,,X,,...,X, for some t,,....t, in T. The question arises
to what extent these observations determine X, i.e. how many different
models can be built upon the same sets of observations? Writing
T=(ty,...,t,) we can define the measurable function X,=(X,,...,X,) as
above and determine the joint distribution Py . Doing this for all pos-
sible choices of n and T then yields the set of all finite-dimensional distri-
butions of X. We can now rephrase our question: can a process X be
constructed uniquely to have a given set of finite-dimensional distributions?

Kolmogorov’s extension theorem provides an explicit canonical con-
struction of X on the product space RT when we have a projective system of
probability measures: for each pair of finite subsets S € Tof T, Pg= P oIl
where II;5: R™SR® is the natural projection map. This allows us to
construct a unique probability measure u on A =RT as the projective limit of
the system {P;:ScT, finite}, so that for each finite SCT, Pg=puoIl5 ",
where ITg: A—RS is the natural projection map.

The construction of such a projective limit measure u proceeds from the
Caratheodory extension theorem for measures: if & is a field of subsets of Q
(replacing countable unions by finite unions in the definition of a o-field
yields the definition of a field) and u is a probability measure on & (so if
U 1E€é for disjoint E, then pu({ J2,E)=)2,uE), then u extends
uniquely to the o-field o(£) generated by &. (See [37] for a proof.)

To use this result, we define the field  of cylinder sets of A=R", given by
the finite-dimensional projection maps: given a finite set ST, Izt €=
I (B(R?), ie. Ce¥; iff C={weA :Il{w)eB} for some Borel set BSRS.
Then each % is a o-field (Exercise!). We set €={Ce¥;:S T, finite}.

To prove that ¥ is a field one obviously requires consistency conditions.
Thus, given a family {Pg:S<T, finite} of finite-dimensional probability
distributions, we require that

@) if S;=0(S) is a permutation of the elements of S, then
Ps(B)=Ps(f;'(B) for any Borel set BcR®, where
SoX1s o X)) = X1y« -« Xon)-
(ii) if S={sy,...,5,} and T={sy,... ..ty +1}, then P¢(B)=P (B x R) for
all Borel sets BSR®.
(This is of course just an explicit statement of the requirement that the
probability distributions form a projective system.)

The measure u on % is now defined by setting u= P Il for each finite
S cT. The consistency conditions ensure that u is well-defined, since any
two representations of a cylinder set can be related by projections and
permutation of indices. To show that p is countably additive on € we need
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only prove that y(C,)—0 when (C,) = ¥ is a decreasing sequence with empty
intersection. But this follows because for each Borel set B<R® we can find a
compact set K = B such that Py(B \K) is arbitrarily small (this expresses the
fact that each Py is tight — see [4], [83, p. 25ff]). For if u(C,)—a>0 we can
assume that each B, =TIl (C,) is compact and that the index sets S, defining
C, increase with n. Taking w,eC, we can find convergent subsequences
{I(w,)} for each acT, and a diagonal argument provides a point
we( 2, C,. (The details may be found in [ 52]], a more sophisticated proofin
[671)

So u is a probability measure on ¥, hence extends to a probability
measure on ¢(%) by Caratheodory’s theorem. Thus we have constructed the
probability space (A, o(%), p). Finally we define the stochastic process X on
(A, 6(%), ) by setting X (w)=w(t) for teT, weA, where w(t)=II(w). It is
then clear that X, is o(%)-measurable and that for S (finite,
Py =pellg ' = Ps. We have ‘proved’ the following result!

0.1.7.  Theorem (Daniell-Kolmogorov): Given a projective system of
finite-dimensional probability distributions ® = {Ps:S < T, finite} there isa
stochastic process X having ® as its system of finite-dimensional distri-
butions. Moreover, the process X can be defined uniquely on the
probability space (RT,6(%),u), by setting X (w) = w(t) for weRT, teT. Thus if
Y=(Y))cr is any stochastic process on a probability space (Q,%,P) with ® as
its system of finite-dimensional distributions, then Y has a canonical
representation X on (R¥,a(%),u).

It is clear that Theorem 0.1.7 is fundamental in the construction of
stochastic processes. It is now natural to say that two stochastic processes
are equivalent if they have the same system of finite-dimensional distri-
butions, since this will ensure that they have the same canonical repre-
sentation on the function space R". Of particular interest is the case when
the canonical process ‘lives’ on a particular subset of RT, i.e. its paths t—w(t)
p-almost surely possess a certain property, such as continuity. The
verification of such properties requires much more sophisticated techniques
and relies heavily on the form of the given system of finite-dimensional
distributions, as we shall see below.

The discussion of the paths t— X {(w) of a stochastic process X will in
general require rather stronger notions of equivalence of process than the
above. We define two such notions in Exercise 0.1.8. They will be discussed
further in Chapter 3.

To what extent these finer distinctions accord with ‘reality’ naturally
remains debatable.



