

8062133

H

11
{1
1]
11

11

E8052133

ALGORITHMS :
THEIR COMPLEXITY
AND EFFICIENCY

Lydia I. Kronsjo
The Computer Centre

The University of Birmingham

A Wiley—Interscience Publication

JOHN WILEY & SONS

Chichester

. New York - Brisbane - Toronto

Copyright © 1979 by John Wiley & Sons, Ltd.
All rights reserved.

No part of this book may be reproduced by any means,
nor transmitted, nor translated into a machine language
without the written permission of the publisher.

Library of Congress Cataloging in Publication Data :

Kronsjo, Lydia 1.
Algorithms: their complexity and efficiency.

(Wiley series in computing)

‘A Wiley—Interscience publication.’

Includes index.

1. Electronic digital computers—Programming.
2. Algorithms. 3. Numerical analysis—Data processing.
4. Computational complexity. I. Title.
QA76.6.K76 519.4 78-22090

ISBN 0 471 99752 8

Photosetting by Thomson Press (India) Limited, New Delhi
and printed in Great Britain by The Pitman Press, Bath, Avon.

ALGORITHMS :
THEIR COMPLEXITY
AND EFFICIENCY

-
p 3]

e A

WILEY SERIES IN COMPUTING

Consulting Editor
Professor D. W. Barron, Department of Mathematics, Southampton University

Numerical Control —Mathematics and Applications

P. Bézier

Communication Networks for Computers

D. W. Davies and D. L. A. Barber

Macro Processors and Techniques for Portable Software

P. J. Brown

A Practical Guide to Algol 68
Frank G. Pagan

Programs and Machines

Richar_d Bird

The Codasyl Approach to Data Base Management
T. William Olle

Data Structures and Operating Systems
Teodor Rus

Computer Networks and their Protocols

D. W. Davies, D. L. A. Barber, W. L. Price and C. M. Solomonides

Algorithms: Their Complexity and Efficiency
Lydia I. Kronsjo

To
my parents Ivan and Varvara,
my father-in-law Erik,
my husband Tom,
my son Tim.

Preface

This book is concerned with the study of algorithms and evaluation of their
performance. Analysis of algorithms is a new area of research, and emerged as a
new scientific subject during the sixties and has been quickly established as one
of the most active fields of study, becoming an important part of computer
science. The reason for this sudden interest in the study of algorithms is not
difficult to trace as the fast and successful development of digital computers
and their uses in many different areas of human activity has led to the construc-
tion of a great variety of computer algorithms. At present it is often the case
that several different algorithms exist for the solution of a single problem or a
class of problems and these algorithms need to be carefully analysed in order to
provide a basis for selecting the best one for the purpose. In many cases, analysis
of algorithms also leads to the revelation of completely new algorithms that
are even faster than all algorithms known before. On the other hand, the study of
algorithms has brought about many no less startling discoveries of certain
natural problems for which all algorithms are inefficient.

The book is intended as a text for an intermediate course in computer science
or computational mathematics which focuses on the basic principles and con-
cepts of algorithms. It requires general familiarity with computers, preferably
some courses on programming and introductory computer science. Each
chapter is devoted to one particular class of problems and their algorithms.
Chapter 1 introduces the subject, while Chapters 2, 3, 4, and 5 discuss four
different classes of problems that are termed as numerical, i.e. the mathematical
problems, solution of which is of a numerical nature. For such problems numeri-
cal accuracy of the computed results is of particular importance. Chapter 6
discusses the problem of (asymptotically) fast multiplication of two numbers
and is based on the fast Fourier transforms and Chapters 7, 8, and 9 discuss
sorting and searching, the most common non-numerical problems encountered
in computing.

The exercises at the end of each chapter are used to provide examples as
well as to complete or generalize some proofs.

All algorithms in the text are given in a form of a sequence of steps, each

Xiii

Xiv

step describing the actions to be undertaken, in natural English. This seems to be
a most neutral way of introducing the algorithms. Actual implementation
details, e.g. a specific programming language, various programming tricks
etc., are left to an interested reader. The reference list at the end of the book
contains published sources for the algorithms and theoretical results discussed
in the text.

I' would like to thank all the people who have critically read various portions
of the manuscript and offered many helpful improvements. In particular, I would
like to thank Peter Jarratt, Stuart Hollingdale, Michael Atkinson, Nelson
Stevens, and Tom Axford. Sincere thanks go to Ilsie Browne for her excellent
typing of the manuscript.

L.I.K.
Birmingham, N ovember 1978

Written

acA
Xy +z
[a]

1]

Ina

axb

A*

Table of Notations

Denotes

a is contained in the set A

x is assigned the value y + z

the least integer greater than or equal to a
the greatest integer less than or equal to b
natural logarithm

a approximately equal to b

conjugate transpose of the matrix A
conjugate transpose of the vector a
transpose of the real matrix A

transpose of the real vector a

mean value of the statistical variable y
standard deviation of the statistical variable y
a is multiplied by b

a is equivalent to b

x is much larger than y

XV

8062133

Contents

Preface xiii
Table of Notations XV
1. Introduction 1
1.1 Definition of an Algorithm 1
1.2 Measures of Efficiency 2
1.3 Algorithms and Complexity 3
1.4 Numerical Algorithms and Computational Complexity 4
1.5 Numerical Algorithms and Numerical Accuracy -]
1.6 Types of Algorithm Analysis 6
1.7 Bounds on Complexity and Models of Computation 7
2. Evaluation of Polynomials 10
2.1 Polynomial Forms and Their Evaluation Algorithms 10
2.2 Preprocessing the Coefficients 15

2.3 On Optimality of the Algorithms for Polynomial Evaluation.
Optimality of the Horner Algorithm 16
2.4 The Belaga Theorems 20
2.5 Polynomials of Degree Less Than or Equal to 6 26
2.5.1 Polynomials of Degree Four 26
2.5.2 Polynomials of Degree Five 28
2.5.3 Polynomials of Degree Six 29

2.6 Accuracy of the Numerical Solution and Conditioning of the
Problem 31

2.6.1 Floating-Point Number Representation and
Summary of Some Basic Results on Floating-Point

Arithmetic 31
2.6.2 Numerical Accuracy and Conditioning 32
2.6.3 Error Analysis of Evaluation Algorithms 35
2.7 Evaluation of the Derivatives of a Polynomial 40

vii

viii

2.8 Evaluation of Polynomials with Complex Argument and
Complex Coefficients

2.9 Final Comments

Exercises

Iterative Processes

3.1 Definition of an Iterative Process

3.2 The Bisection Method

3.3 The Order of Convergence of an Iterative Process

3.4 The Newton-Raphson Method. Convergence

3.5 The Secant Method. Convergence

3.6 Method of False Position (Regula Falsi)

3.7 Formulation of the Optimality Problem

3.8 Iterative Methods for Finding Zeros of Functions that Change
Sign in an Interval. Dekker’s Algorithm

3.9 Optimality of Root-Finding Algorithms for Functions that
Change Sign in an Interval

3.10 Complexity Parameters and Efficiency Measures

3.11 Interpolation and One-Point Iterative Methods
3.11.1 Direct Polynomial Interpolation
3.11.2 Inverse Polynomial Interpolation
3.11.3 Derivative Estimated Iterative Methods

3.12° Order of Convergence and Optimality of One-Point Iterative
Methods

3.13 Order of Convergence of Polynomial Schemes

3.14 Multi-Point Iterative Methods

3.15 Further Examples of Multi-Point Iterative Methods

3.16 Optimality of Multi-Point Iterative Methods

3.17 Conditioning of the Root-Finding Problem and Stopping
Criteria for Computations

3.18 The Numerical Stability of Iterative Algorithms

Exercises

Direct Methods for Solving Sets of Linear Equations

4.1

4.2

43
44

Gaussian Elimination

4.1.1 Ordinary Gaussian Elimination

4.1.2 Gaussian Elimination and Evaluation of
a Matrix Determinant

4.1.3 Triangular Decomposition

4.1.4 Storage Requirements for Triangular Decomposition

Algebraic Complexity : the Number of Arithmetic Operations

Involved in Gaussian Elimination /

Matrix Inversion and its Algebraic Complexity

Error Analysis

4.4.1 Conditioning of the Problem. Backward Error
Analysis and Solution of Linear Simultaneous
Equations

43
45
45

47
47
48
49
49
52
55
55

57

63
65
68
68
71
74

75
76
78
82
84

84
86
87

91
91

92
95
97

98

100
101

102

4.5
4.6

4.7

4.8
49

4.10

4.11
4.12
4.13
4.14

4.4.2 Numerical Stability of Triangular Decomposition

Iterative Refinement of the Solution

Cholesky Decomposition of Symmetric Matrices

4.6.1 The Cholesky Method

4.6.2 Algebraic Complexity: the Number of Arithmetic
Operations Required to Solve a Set of Linear Equations

4.6.3 Matrix Inversion

4.6.4 Numerical Stability

The Orthogonal Reduction Methods

4.7.1 The Householder Reduction

4.7.2 Algebraic Complexity: the Number of Arithmetic
Operations Required to Solve a Set of Linear Equations
Using the Householder Reduction

4.7.3 Matrix Inversion by the Householder Method and
its Computational Complexity

4.7.4 Error Analysis of Householder Reduction

How the Efficency of a Direct Method may be Increased

The Winograd Method

4.9.1 The Winograd Identity

4.9.2 The Winograd Matrix Multiplication Algorithm

4.9.3 Optimality of Winograd’s Formula

4.9.4 Algebraic Complexity: the Number of Arithmetic
Operations Required by Winograd’s Method

4.9.5 Error Analysis of Winograd’s Identity

4.9.6 Numerical Stability of LU Decomposition Obtained
Using Winograd’s Matrix Multiplication Algorithm

4.9.7 Cholesky Decomposition Using Winograd’s Algorithm

The Strassen Method

4.10.1 Matrix Multiplication

4.10.2 Matrix Inversion

Winograd’s Variant of the Strassen Algorithm

The Karatsuba—Makarov Method

Summary of the Direct Methods Studied

Epilogue

Exercises

The Fast Fourier Transform

5.1
5.2
5.3
54
5.5

Introduction

The Continuous Fourier Transform

The Discrete Fourier Transform

The Fourier Transform and Operations on Polynomials

The Fast Fourier Transform

5.5.1 The FFT Algorithm: Elementary Derivation

5.5.2 Matrix Form of the FFT

5.5.3 The FFT Algorithm for a Non-Uniform Factorization
5.5.4 The FFT Algorithm in situ

103
109
111
111

113
114
115
116
116

122

125
126
130
131
131
132
132

133
136

140
144
144
145
147
148
148
149
151
152

155
155
156
158
161
163
164
168
170
172

5.6

Optimal Factorization for the FFT Algorithm

5.7 The FFT Algorithm of Radix 2
5.7.1 General Formula and a Flowgraph of the FFT
Algorithm of Radix 2
5.7.2 Analysis of the FFT Flowgraph
5.7.3 Unscrambling the Fast Fourier Transform
5.8 Basic Discrete Fourier Transform (DFT) Computational
Algorithms for Different Types of Data
5.9 Round-off Errors in the Fast Fourier Transform
5.10 Conclusion
Exercises

6.1
6.2
6.3

. Fast Multiplication of Numbers: Use of the Convolution Theorem

On the Minimum Computation Time of Functions

An Initial Reduction

Schonhage—Strassen Algorithm for Fast Multiplication of

Integers

6.3.1 Generalization of the Initial Reduction

6.3.2 Basic Modular (or Residue) Arithmetic

6.3.3 The Integer Fourier Transform

6.3.4 Multiplication of Two Numbers Using Modular
Arithmetic

6.3.5 Calculation of the Reduced Product Coefficients
Exactly

6.3.6 Estimation of the Work Involved

Exercises

Internal Sorting

7.1
1:2

7.3

7.4

1.5
7.6

Introduction

Find-the-Largest Algorithm

7.2.1 Frequency Analysis of the Algorithm
Comparison Sorting by Selection

7.3.1 The Straight Selection Sort

7.3.2 Analysis of the Method

7.3.3 Heapsort—a Comparison Sort of Complexity » log,n
7.3.4 The Number of Comparisons Required by the Heapsort
7.3.5 The Number of Exchanges Required by the Heapsort

Comparison Sorting by Exchanging
7.4.1 The Bubble Sort
7.4.2 Analysis of the Bubble Sort

7.4.3 Quicksort—a Comparison Sort of Complexity » log, n,

on Average
7.4.4 Storage Analysis of Quicksort
7.4.5 Average Time Required by Quicksort
Related Problem: Insertion of a Key in an Ordered Array
Optimum Comparison Sorting

174
177

178
180
183

186
189
195
196

199
199
200

202
202
204
207

208

210
215
217

218
219
219
219
224
224
224
226
229
230
231
231
232

235
237
239
240
241

7.6.1 Lower Bound on the Maximum Number of Comparisons
7.6.2 Lower Bound on the Average Number of Comparisons

7.7 Related Problem: Finding the kth Largest of n
7.7.1 Bounds on the Maximum Number of Comparisons
7.7.2 Upper Bound on the Average Number of Comparisons
Exercises

. Large Scale Data Processing: External Sorting Using

Magnetic Tapes
8.1 The 2-way Merge
8.1.1 Comparisons in the 2-Way Merge
8.2 Merge Sorting
8.2.1 Maximum Number of Comparisons Required by the
Balanced 2-Way Merge
8.3 The Use of Merge in External Sorting
8.3.1 Main Characteristics Which Effect the Performance of
an External Sorting Algorithm
8.4 The Number of Complete Passes Required by the
Balanced P-Way Merge
8.5 Polyphase Merge and Perfect Fibonacci Distributions
8.5.1 The Number of Complete Passes Required
8.6 The Cascade Merge
8.6.1 The Number of Complete Passes Required
8.7 The Oscillating Sort
8.7.1 The Number of Complete Passes Required
8.8 Generation of the Initial Subfiles
8.9 Merge Trees and Optimum Merge Sorting
Exercises
Searching
9.1 Introduction
9.2 Classification of Search Algorithms
9.3 Ordered Tables
9.3.1 Algorithm for Sequential Search
9.3.2 Algorithm for Binary Search
9.3.3 Algorithm for Fibonaccian Search
9.4 Search Trees
9.4.1 Binary Tree Search Methods and Data Structures
9.4.2 Search Methods for Unequal Distribution Tables
9.4.3 Optimum Cost Trees
9.44 Algorithm for Computing and Construction of
Minimum-Cost Binary Tree
9.5 A Tree Search Followed by Insertion or Deletion of the Key
9.5.1 A Tree Search and Insertion Algorithm
9.5.2 A Tree Search and Deletion Algorithm
9.6 Methods for Rebalancing the Search Trees

X1

243
246
247
248
251
252

255
256
256
259

260
261

262

267
269
273
278
280
281
282
282
283
287

289
289
291
293
293
293
293
294
294
297
298

300
303
304
306
307

xil

9.7
9.8

9.9

9.10

9.6.1 The Balanced Trees Method of Adelson—Velski and
Landis (The AVL Trees)

Hashing

Computing the Initial Hashing Function

9.8.1 Distribution-Dependent Hashing Functions

9.8.2 Cluster-Separating Hashing Functions

9.8.3 Distribution-Independent Hashing Functions

9.8.4 A Multiplicative Hashing Function

Collision Resolution by Open Addressing

9.9.1 The Pile-Up and Secondary Clustering Phenomena

9.9.2 Open Addressing Algorithms

Efficiency Analysis of the Open Addressing Algorithms

9.10.1 Analysis of Linear Probing

9.10.2 Analysis of the Uniform Hashing Model and
Optimality Considerations

Exercises

Appendix A. Some Basic Results on the Error Analysis of the

Floating-Point Matrix Multiplication and the Solution of
Sets of Linear Equations

Appendix B. Some Basic Preliminaries on Laws of Probability and

Statistical Analysis

Bibliography and References

Index

308
309
310
310
311
313
314
316
316
317
321
323

328
331

334

341

355

Introduction

This book will be chiefly concerned with an investigation of algorithms in
order to evaluate their performance. This comparatively new field of study
is known as algorithmic analysis and forms part of the more general discipline
of computer science. In practical terms, a goal of algorithmic analysis is ‘to
obtain sufficient understanding about the relative merits of complicated
algorithms to be able to provide useful advice to someone undertaking an
actual computation’ (Gentleman, 1973). In broader interpretation, however,
algorithmic analysis includes the study of all aspects of performance in computa-
tional problem solving, from the preliminary formulation, through the program-
ming stages, to the final task of interpreting the results obtained. We would
also like to prove lower bounds on the computation time of various classes of
algorithms. In order to show that there is no algorithm to perform a given
task in less than a certain amount of time, we need a precise definition of what
constitutes an algorithm. First, then, what is an algorithm?

1.1 Definition of an Algorithm

A procedure consisting of a finite set of unambiguous rules which specify a
finite sequence of operations that provides the solution to a problem,
or to a specific class of problems, is called an algorithm.

Several important features of this definition must now be emphasized.

First, each step of an algorithm must be unambiguous and precisely defined.
The actions to be carried out must be rigorously specified for each case.

Secondly, an algorithm must always arrive at a problem solution after a
finite number of steps. Indeed, the general restriction of finiteness is not suffi-
cient in practice, as the number of steps needed to solve a specific problem,
although finite, may be too large for practicable computation. A useful algorithm
must require not only a finite number of steps, but a reasonable number.

Thirdly, every meaningful algorithm possesses zero or more inputs and
provides one or more outputs. The inputs may be defined as quantities which are

1

2

given to the algorithm initially, before it is executed, and the outputs as quantities
which have a specified relation to the inputs and which are delivered at the
completion of its execution.

Fourthly, it is preferable that the algorithm should be applicable to any
member of a class of problems rather than only to a single problem. This
property of generality, though not a necessity, is certainly a desirable attribute
of a useful algorithm.

Finally, we would like to mention that although the concept of an algorithm
is a very broad one, in this book we restrict ourselves to algorithms designed to
be executed on a computer. Such an algorithm must be embodied in a computer
program (or set of programs), and so in the sequel the two terms will be used
interchangeably.

1.2 Measures of Efficiency

It is relatively easy to invent algorithms. In practice, however, one wants not
only algorithms, one wants good algorithms. Thus, the objective is to invent
good algorithms and prove that they are good. The ‘goodness’ of an‘algorithm
can be appraised by a variety of criteria. One of the most important is the time
taken to execute it. There are several aspects of such a time criterion. One might
be concerned with the execution time required by different algorithms for
solution of a particular problem on a particular computer. However, such an
empirical measure is strongly dependent upon both the program and the
machine used to implement the algorithm. Thus, a change in a program may
not represent a significant change in the underlying algorithm but may, never-
theless, affect the speed of execution. Furthermore, if two programs are com-
pared first on one machine and then another, the comparisons may lead to
different conclusions. Thus, while comparison of actual programs running
on real computers is an important source of information, the results are inevi-
tably affected by programming skill and machine characteristics.

A useful alternative to such empirical measurements is a mathematical
analysis of the intrinsic difficulty of solving a problem computationally. Judi-
ciously used, such an analysis provides an important means of evaluation the
cost of algorithm execution.

The performance time of an algorithm is a function of the size of the computa-
tional problem to be solved. However, assuming we have a computer program
which eventually terminates, solving a particular problem requires only suffi-
cient time and sufficient storage. Of more general interest are algorithms
which can be applied to a collection of problems of a certain type. For these
algorithms, the time and storage space required by a program will vary with
the particular problem being solved. Consider, for example, the following
classes of problems, and note the role of the value of the parameter n.

1. Find the largest in a sequence of n integers.
2. Solve a set of linear algebraic equations Ax — b, where A is an nx n
real matrix and b is a real vector of length n.

