

STUDY GUIDE

to accompany

ELECTRONICS FUNDAMENTALS: CIRCUITS, DEVICES AND APPLICATIONS

Second Edition

by THOMAS L. FLOYD

Prepared by

WALLYMCEREYRE

DeVry Institute of Technology, Unicago

Merrill, an imprint of Macmillan Publishing Company New York Cover illustration: Hans & Cassady

Executive Editor: Stephen Helba

Editor: David Garza

Developmental Editor: Carol Thomas

Production Editor: JoEllen Gohr

Art Coordinator: Peter A. Robison

Cover Designer: Brian Deep

Copyright © 1991, by Macmillan Publishing Company. Merrill is an imprint of Macmillan Publishing Company.

Previous edition copyrighted 1989 by Merrill Publishing Company.

Printed in the United States of America

All rights reserved. No part of this book may be reproduced or transmitted in means, electronic or mechanical, including photocopy, recording, or any retrieval system, without permission in writing from the Publisher.

Macmillan Publishing Company. 866 Third Avenue, New York, NY 10022

Collier Macmillan Canada, Inc.

International Standard Book Number: 0-675-21406-8

ACKNOWLEDGMENTS

My thanks to Naqi Akhter (DeVry - Chicago) and Tom Floyd for their valuable suggestions and corrections toward improving this study guide. Also, I appreciate the efforts of the entire Production team at Macmillan, including Carol Thomas, Jo Griffith, JoEllen Gohr, Dave Garza, and Steve Helba.

PREFACE

TO THE STUDENT:

This study guide can be a valuable learning aid as you explore the fascinating world of electronics. After you read each chapter of the text, you can reinforce your mastery of the subjects by reading the chapter summary in this study guide. Then the chapter quizzes will help define areas where your understanding of the material may be weak. Take the quizzes; if you miss some questions, then reread the related concepts in the text or in this study guide. Once you have gained full mastery of each chapter, you can progress to the next one. May your new career in electronics be interesting and rewarding.

NEW in this edition is an electronic math review, including the use of the calculator. You will find this review in Appendix A. If you need a brief math review and/or help in mastering your new pocket calculator, then this may be of benefit.

TO THE INSTRUCTOR:

This study guide is arranged with many multiple-choice questions at the end of each chapter.

These sheets may be torn out and assigned as homework or classroom assignments, or they may be used as quizzes. Many of my students report that the study guide concept is of benefit to them if the instructor uses the material as listed above. I welcome your feedback.

CONTENTS

PREFACE	xii	
---------	-----	--

REVIEW OF KEY POINTS IN CHAPTER 1: INTRODUCTION 1

HISTORY 1

CAREERS IN ELECTRONICS 2

CIRCUIT COMPONENTS 2

ELECTRICAL UNITS 2

SCIENTIFIC NOTATION AND METRIC PREFIXES 3

TECHNICIAN TIPS 3

QUIZ 5

REVIEW OF KEY POINTS IN CHAPTER 2: THE BASIC ELECTRICAL QUANTITIES 9

ELECTRONS 9

ELEÇTRICAL CHARGE 9

VOLTAGE 9

CURRENT 10

RESISTANCE 10

THE ELECTRIC CIRCUIT 11

ANALOG METERS 12

DIGITAL METERS 12

TECHNICIAN TIPS 13

REVIEW OF KEY POINTS IN CHAPTER 3: OHM'S LAW AND POWER 19
OHM'S LAW 19
POWER 19
RESISTOR POWER RATINGS 20
TECHNICIAN TIPS 20
QUIZ 23
REVIEW OF KEY POINTS IN CHAPTER 4: SERIES CIRCUITS 27
RESISTORS IN SERIES 27
TOTAL SERIES RESISTANCE 27
SOURCES IN SERIES 27
KIRCHHOFF'S VOLTAGE LAW 28
POWER 28
OPENS AND SHORTS 28
REFERENCE POINTS 29
TECHNICIAN TIPS 29
QUIZ 31
REVIEW OF KEY POINTS IN CHAPTER 5: PARALLEL CIRCUITS 35
RESISTORS IN PARALLEL 35
VOLTAGES IN PARALLEL CIRCUITS 35
KIRCHHOFF'S CURRENT LAW 35
PARALLEL RESISTORS 35

OHM'S LAW IN PARALLEL CIRCUITS

POWER 36

36

TROUBLES 36

TECHNICIAN TIPS 37

QUIZ 39

REVIEW OF KEY POINTS IN CHAPTER 6: SERIES-PARALLEL CIRCUITS 43

SERIES-PARALLEL CIRCUITS 43

CALCULATING SERIES-PARALLEL CIRCUITS 43

VOLTAGE DIVIDERS 44

CIRCUIT THEOREMS 44

CIRCUIT FAULTS 45

TECHNICIAN TIPS 45

QUIZ 47

REVIEW OF KEY POINTS IN CHAPTER 7: MAGNETISM AND ELECTROMAGNETISM 51

MAGNETISM 51

ELECTROMAGNETISM 51

INDUCTION 52

TECHNICIAN TIPS 52

QUIZ 53

REVIEW OF KEY POINTS IN CHAPTER 8: INTRODUCTION TO ALTERNATING CURRENT AND VOLTAGE 57

ac SINE WAVE 57

MEASURING SINE WAVES 57

SINE WAVE SOURCES 57

ANGLES AND PHASES 58

NONSINUSOIDAL WAVEFORMS 58	
OSCILLOSCOPE 59	
TECHNICIAN TIPS 59	
QUIZ 61	
REVIEW OF KEY POINTS IN CHAPTER 9: CAPACITORS	65
CAPACITANCE AND CAPACITORS 65	
CAPACITOR TYPES 65	
CAPACITORS IN CIRCUITS 66	
CAPACITORS IN dc CIRCUITS 66	
CAPACITORS IN ac CIRCUITS 66	
OHM'S LAW AND POWER 67	
CAPACITOR USES 67	
TECHNICIAN TIPS 67	
QUIZ 69	
REVIEW OF KEY POINTS IN CHAPTER 10: INDUCTORS	73
INDUCTANCE AND INDUCTORS 73	
INDUCTOR TYPES 73	
INDUCTORS IN CIRCUITS 74	
INDUCTORS IN dc CIRCUITS 74	
INDUCTORS IN ac CIRCUITS 74	
OHM'S LAW AND POWER 75	
INDUCTOR USES 75	
TECHNICIAN TIPS 75	
QUIZ 77	

OHM'S LAW AND KIRCHHOFF'S LAW 58

TRANSFORMER OPERATION 81

TRANSFORMER TYPES 81

MAXIMUM POWER TRANSFER 82

TRANSFORMER CHARACTERISTICS 82

TECHNICIAN TIPS 82

QUIZ 85

REVIEW OF KEY POINTS IN CHAPTER 12: FREQUENCY RESPONSE OF RC CIRCUITS 89

ac RESPONSE OF RC SERIES CIRCUITS 89

ac RESPONSE OF RC PARALLEL CIRCUITS 89

POWER IN RC CIRCUITS 90

LEAD-LAG RC CIRCUITS 90

RC FILTERS 90

TECHNICIAN TIPS 91

QUIZ 93

REVIEW OF KEY POINTS IN CHAPTER 13: FREQUENCY RESPONSE OF RL CIRCUITS 97

ac RESPONSE OF RL SERIES CIRCUITS 97

ac RESPONSE OF RL PARALLEL CIRCUITS 97

POWER IN RL CIRCUITS 97

LEAD-LAG RL CIRCUITS 98

RL FILTERS 98

TECHNICIAN TIPS 98

SERIES RLC CIRCUITS 105

SERIES RESONANCE 105

SERIES RESONANT FILTERS 106

PARALLEL RLC CIRCUITS 106

PARALLEL RESONANCE 107

PARALLEL RESONANT FILTERS 107

TECHNICIAN TIPS 108

QUIZ 109

REVIEW OF KEY POINTS IN CHAPTER 15: PULSE RESPONSE OF RC AND RL CIRCUITS 113

RC INTEGRATORS 113

RC DIFFERENTIATORS 113

RL INTEGRATORS 114

RL DIFFERENTIATORS 114

TECHNICIAN TIPS 114

QUIZ 115

REVIEW OF KEY POINTS IN CHAPTER 16: INTRODUCTION TO SEMICONDUCTOR DEVICES 119

INTRODUCTION TO SEMICONDUCTORS 119

PN JUNCTIONS 120

DIODE BIAS 120

TECHNICIAN TIPS 121

REVIEW OF KEY POINTS IN CHAPTER 17: DIODES AND APPLICATIONS 127

HALF-WAVE RECTIFIERS 127

FULL-WAVE RECTIFIERS 127

FULL-WAVE BRIDGE RECTIFIERS 128

RECTIFIER FILTERS 128

DIODE CLIPPING CIRCUITS 128

DIODE CLAMPING CIRCUITS 129

ZENER DIODES 129

VARACTOR DIODES 130

LEDs AND PHOTODIODES 130

TECHNICIAN TIPS 131

QUIZ 133

REVIEW OF KEY POINTS IN CHAPTER 18: TRANSISTORS AND THYRISTORS 137

BIPOLAR JUNCTION TRANSISTORS 137

THE BJT TRANSISTOR IN AMPLIFIERS 137

THE BJT AS A SWITCH 138

BJT PARAMETERS 138

JUNCTION FIELD EFFECT TRANSISTORS 138

METAL OXIDE SEMICONDUCTOR FET (MOSFET) 139

FET BIASING 139

UNIJUNCTION TRANSISTOR 140

THYRISTORS 140

TECHNICIAN TIPS 141

REVIEW OF KEY POINTS IN CHAPTER 19: AMPLIFIERS AND OSCILLATORS 147

COMMON-EMITTER AMPLIFIER 147

COMMON-COLLECTOR AMPLIFIER 147

COMMON-BASE AMPLIFIER 148

THE FET COMMON-SOURCE AMPLIFIER 148

THE FET COMMON-DRAIN AMPLIFIER 149

MULTISTAGE AMPLIFIERS 149

CLASS A OPERATION 149

CLASS B PUSH-PULL OPERATION 150

CLASS C OPERATION 150

OSCILLATORS 150

TECHNICIAN TIPS 151

QUIZ 153

REVIEW OF KEY POINTS IN CHAPTER 20: OPERATIONAL AMPLIFIERS (OP-AMPS) 157

OP-AMP INTRODUCTION 157

THE DIFFERENTIAL AMPLIFIER 157

OP-AMP DATA SHEET PARAMETERS 157

NEGATIVE FEEDBACK AND OP-AMPS 158

TECHNICIAN TIPS 159

QUIZ 161

REVIEW OF KEY POINTS IN CHAPTER 21: BASIC APPLICATIONS OF OP-AMPS 165

COMPARATORS 165

SUMMING AMPLIFIERS 165

INTEGRATORS AND DIFFERENTIATORS 166

OP-AMP OSCILLATORS 166

ACTIVE FILTERS 166

THREE-TERMINAL REGULATORS 167

TECHNICIAN TIPS 167

QUIZ 169

APPENDIX A: ELECTRONIC MATH REVIEW AND THE CALCULATOR 175

ELECTRONIC SHORTCUTS 175

DECIMAL NUMBER SYSTEM 175

SCIENTIFIC NOTATION 176

ENGINEERING NOTATION 177

THE CALCULATOR AND ENGINEERING NOTATION 178

EXPONENTS AND ROOTS 179

RECIPROCALS 180

PERCENT 181

APPENDIX B: ANSWERS TO CHAPTER QUIZZES

183

REVIEW OF KEY POINTS IN CHAPTER 1

INTRODUCTION

HISTORY

- The word *electricity* was used by Sir Thomas Browne (1605-82).
- Benjamin Franklin theorized that electricity was a fluid.
- Charles Coulomb proposed the laws of charge in 1785.
- Volt, a unit of potential energy, was named after Alessandro Volta (1745-1827).
- Electromagnetism was discovered in 1820 by Hans Oersted.
- The ampere, a unit of current, was named after André Ampère. He laid the fundamental laws that are basic to electricity.
- Ohm's law, named after Georg Simon Ohm in 1826, forms the basis for relationships among voltage, resistance, and current.
- The electronic age started in 1909, when Robert Millikan measured the charge on an electron.
- The year 1904 saw the invention of the first vacuum tube by John Fleming.
- The first practical amplifier device, an audion, was built in 1907 by Lee de Forest.
- Television picture tubes got their start in the 1920s by Vladimir Zworykin's invention of the kinescope.
- Digital computers got started in 1946 at the University of Pennsylvania.
- The transistor was developed in 1948 at Bell Labs.
- Integrated circuits came into being in the early 1960s.

CAREERS IN ELECTRONICS

- The service shop technician works in an electronic repair facility. He or she could repair any type of electronic equipment.
- The manufacturing technician works in a plant, either testing equipment or maintaining testing equipment.
- The laboratory technician works closely with engineers, breadboarding circuits and making tests for the engineer.
- The field service technician services and repairs electronic equipment at the customer's location.
- The technical writer prepares manuals for the use and service of electronic equipment.
- The technical salesperson is responsible for sales of high-technology products.

CIRCUIT COMPONENTS

- Resistors resist the flow of electric current in a circuit.
- Capacitors store electric charge.
- Inductors are used to store energy in an electromagnetic field.
- *Transformers* are used to couple ac voltages between circuits and to increase or decrease ac voltages.
- Semiconductor devices are diodes, transistors, and integrated circuits.

ELECTRICAL UNITS

Engineers and scientists must use common terms when communicating with each other.
 Each electric quantity must have a unique reference name. Some examples are volts for voltage, amperes for current, ohms for resistance, farads for capacitance, and henrys for inductance. There are many more.

SCIENTIFIC NOTATION AND METRIC PREFIXES

- Scientific notation and metric prefixes are convenient ways of expressing both very large and very small numbers. For example, 0.000006 in scientific notation is 6 x 10^{-6} . Standard metric prefixes are used to make unit expressions even shorter; that is, 6 x 10^{-6} = 6μ .
- Scientific notation and metric prefixes are adaptable to the modern calculator.

TECHNICIAN TIPS

- Upon completion of your electronic education, you will be seeking a good-paying, interesting job. Your future employer will be looking at your technical qualifications and, sometimes of even more importance, your attitude. Are you enthusiastic, outgoing, pleasant? Will you fit into the working place? Your attitude and outlook on life will be of great influence to the selection of you as a new employee.
- Learning the shortcuts to electronic terminology will speed you on your career. This field is filled with these abbreviations. Some of these are F for farad, E or V for voltage, I for current, f for frequency, Hz for cycles per second. The list is long, so be prepared for the new language of electronics.
- The term *powers of ten* describes a mathematical notation that you will use to make your understanding of electronic measurements and terms much easier. It is a shortcut to using the large and small numbers used in electronics. Use the powers of ten to communicate with your calculator. This will be indispensable to you as you study the text.
- Metric prefixes will help you to speak and write the language of electronics. As an example, 25,000,000 ohms can be expressed as 25 Megohms. As another example, 0.000000000035 farad can be expressed as 35 x 10⁻¹² or, even simpler, 35 pf since the prefix "p" means 10⁻¹². See how each simplification gets the terms shorter and easier to use.