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Preface

The theory of finite automata and of rational languages could be likened to the
ground floor of a huge buiiding under construction which is theoretical computer
science. The metaphor would indicate first that it can be entered on the ground
level and secondly that it is more convenient to go through it in order to reach the
higher levels. It is also the first purely mathematical theory to emerge from the
needs and intuitions of computer science in the wider sense. In fact, at the end of
the 1950s Kleene, who was intrigued by electronic models of the nerveus system
which were then very fashionable, proposed characterizing feasible calculations
by means of a system making use of a single bounded memory.

This led him to discover what are now called rational languages which are the
subject of the present book by J. E. Pin. Subsequent work has revealed that this
class is a particularly fundamental mathematical entity in the study of finite
systems, for they appear quite naturally starting from considerations as diverse
as those of restricted logical systems or the standard rational functions of
analysis.

Frcm the start, one of the principal problems was found to be a problem of
classification, or rather of hierarchization. J. Rhodes showed that the compo-
sition of automata preserved the associated groups and McNaughton discovered
that the existence of non-trivial groups of this kind was intimately related to the
presence of loops within the system of calculation. The development by S.
Eilenberg of the notion of variety of language gave a new impetus to research by
coordinating these results with others such as the excellent theorem of Imre
Simon. J. E. Pin has been one of the most active investigators in this area and we
are_indebted to him for numerous original contributions to the subject of

However, this rapid growth has necessitated a new synthesis incorporating the
techniques discovered since the treatise of S. Eilenberg. J. E. Pin has undertaken
this task and has been successful in presenting the subject with the care of an
inspiring teacher, beginning with the most elementary aspects. Although it can
casily be included in the more general framework of the theory of automata. it is
an independent work, both of introduction and of preparation for research,
which the author presents to the public interested in mathematics and in data
processing.

M. P. SCHUTZENBERGER
Professor in the University of Paris VII
Corresponding Member of the Academy of Sciences
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Foreword

The aim of this book is to present the fundamental results of the theory of finite

automata and of recognizable languages, or regular languages.
mﬁfﬁmﬁWompuwr science
processing, whether it is used to model a particular machine, to formalize records
of communication or to describe logic circuits. The notion of a recognizable
language is equally fundamental: it enables us to take account of the linking of
the calculations in a program, to express the behaviour of a process or to describe
certain operations of a text editor and more generally to describe any iterative
algorithm. Moreover, recognizable languages constitute the first link in a
hierarchy of progressively more complex languages. Under this heading they
were studied quite early: Kleene's theorem, on whichmnite
automata is based, dates from 1956. Subsequently, the work of numerous
investigators, in the first rank of whom appear M. P. Schiitzenberger, R.
McNaughton, J. A. Brzozowski and I. Simon, has made clear the profound
connections which exist between finite automata, recognizable languages and
finite semigroups. The concept of variety of languages, which was introduced by
Eilenberg in 1976, has enabled us to formalize this triple approach—automata,
language and semigroups—and has provided a coherent and unified framework
or the theory.

Since then the modern theory of automata has been constructed around this
fundamental idea. .

Thus the aim of this book is to present the theory of automata from the point
of view of variety of languages. This approach has at least two advantages: it
enables us to handle classical results in a concise and rigorous manner, and it
facilitates access to the most recent results and problems. The first four chapters
of the book are devoted to fundamental statements of the theory of automata.
These theorems are proved at the same time (with the exception of Kleene’s
theorem, which is stated and admitted withMa&d by
numerous examples. The final chapter presents a succinct review of the most
recent results of the theory but contains no proofs.

The content of this book is approximately that of a course on DEA given at the
University of Paris VI in the period 1981-1983. The level of presentation is thus
that of an advanced graduate course. However, certain parts of the book —for
example Chapter 1, part of Chapter 2 or the results in Chapter 4—can be used for
a master’s course on the theory of languages. The whole book should enable the
reader to arrive quickly at the research level; thus the most important references
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are accompanied by a brief commentary aimed at facilitating the orientation of
the reader. The reader of this book does not require any previous knowledge of
formai languages or automata. However, it is necessary to have some familiarity
with the formalism of algebra although, again, the previous theoretical
knowledge required is limited to the notion of a group.

Chapter 0 defines the notation used in the book. Chapter | presents the basic
material: semigroups, finite automata and recognizable languages. All the details
of the algorithms for calculating the syntactic monoid of a language are also
given in this chapter. Moreover, these algorithins have been implemented on a
computer (APL programs of d’Autebert, Cousineau, Perrot and Rifflet).
Chapter 2 is devoted to varieties. First the varieties of semigroups and of finite
monoids are introduced, then their interpretation in terms of equations is given
and finally Eilenberg’s variety theorem is proved. Elementary examples of
varieties of languages are presented at the end of the chapter. Chapter 3 is an
introduction to the theory of finite semigroups. The subjects dealt with are
Green's relations, simple and 0-simple semigroups, and the structure of regular
2-classes and of the minimal ideal of a finite semigroup. The algorithm for
calculation of a regular %-class is presented in detail and is illustrated by
numerous examples. This algorithm has also been implemented on a computer
(the APL programs of the authors cited above). We return to varieties of
semigroups in the last two sections: the first presents the varieties of semigroups
defined by Greer:’s relations, and the second introduces relational morphisms
and V-morphisms. The theorem of I. Simon on piecewise-testable languages and
that of Schiitzenberger on star-free languages are proved in Chapter 4. Some
applications of Simon’s theorem to finite semigroups and the characterization of
A-trivial and ¥-trivial languages are also included in this chapter. Chapter 5
presents various aspects of the theory of automata. The first section is devoted to
operations on the languages: concatenation, mixing, star, morphisms, sequential
functions etc. The second gives a résumé of recent work on hierarchies of
languages—including the connection with symbolic logic-—and the third pre-
sents the relations with the theory of variable-length codes. Finally the last
section recalls briefly some other lines of research. The problems appearing at the
end of the chapters are often the subjects of research. However, we have not given
an indication of the difficuity of these problems except for problems which are
open or have been recently solved—to determine the difficulty of a problem is
itself a difficult problem.

T'wish to thank in particular my friends S. W. Margolis. H. Straubing and D.
Thérien for their numerous remarks and suggestions during the preparation of
this book. I am also grateful to all the people who have read through or
commented on various parts of the manuscript: J. Berstel, J. P. Pécuchet, D.
Perrin. Ch. Reutenauer, G. Rindone, S. Schwer and W. Thomas as well as all the
students on my course in Pa.is. I should like also to thank G. Lallement, J. F.
Perrot and M. P. Schiitzenberger to whom 1 owe my interest in the theory of
automata. Finally I thank Madame A. Dupont for her excellent work on the
typing of the manuscript. J.E.PIN
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Introduction

Relations

This brief preliminary chapter is aimed at making precise certain definitions
and properties referring to binary relations.

Let E and F be two sets. A relation between E and F is a subset R of E x F.If
E =F,wesaythatRisa remmmm

w\ﬁor example it is more convenient to write 2 < 3 than (2, 3)e <.

A relation R on a set E is reflexive if, for every u € E, uRu. It is symmetric if, for
every (u,v)eE x E, uRv implies vRu. It is transitive if, for every
(,v,w)eE x E x E, uRv and yRw imply u Rw. It is antisymmetric if, for every
(u,v)€eE x E, uRv and vRu imply u=v. An gqulvalence relation is a relation
which is simultaneously reflexive, symmetric and transitive. Aquasn-order relation
1s a relation which is reflexive andmur relation is a reiation
which is reflexive, transitive and antisymmetric. A total order relation is an order
reiation such that, forevery (u,v)e E x E,we haveu RvorvRu.

" A (partial) fungtion ¢: E — F is a relation over E x F such that for every xe E
there exists one and only one (in the case of a partial function, at most one)
" element y € F such that (x, y) e ¢W@M@L§&l{‘n

this book we shall employ the notation x¢, which i1s more convenient in the-
theory of automata.

We can also consider each relation R < E x Fin a dynamic way and associate
with it the function t from E into the set of subsets of F defined by
O —  —  ————T —— —

ut = {ve F)(u,v)eR}

Conversely, if 7 is a function from E into the set of subsets of F, the graph R of 1,
which is defined by .

R = {(u,v)e E x Flveur}

is a relation between E and F. By abuse of language, we say that t:E — F is a

" relation from E into F.

A relation 7: E — F is called injective if, for every u,ve E. ut n vt # J implies
u = v. In particular, if 7 is a function, we find again the standard notion of an
injective function. Moreover, 1 is a surjective relation if, for every v e F, there exists
ue E such that ve ut.

The relations over a set E are ordered by inclusion: if R,S < E x E are two
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relations, we say thati‘i_s/ﬁn r than S (or that S is coarser than R)if R < S. In
Chapter 4 we shafThave to use the following elementary result.

Proposition 0.1
For every partial order relation R on a finite set E, there exists a total order
relation on E which is coarser than R.

Proof

Put S(R) = {(a,b)eE x E|(a,b)¢ R and (b,a)¢ R}. If S(R) = &, R is a total
order. Otherwise fix (a,b)e S(R) and put R = Ru {(x,y)e E x E|(x,a)eR and
(b,y)eR}. Then R’ is a partial ordering on E which is coarser than R. Since
(a,b)e R, S(R') is strictly included in S(R) and we reach the conclusion by
induction over the cardinality of S(R).

Given a relation 7:E —» F which is a graph R c E x F, we denote by
t~':F — E the graph relation R™! = {(v,u)e F x E|(u,v)e R}. We can then see
easily that, forevery ve F, vt~ ! = {ue E|veut}.

More generally, if X is a subset of E, we put

Xt=Jxt

xeX
If Yis a subset of F, we then have

.Yr=! = () yr7! = {ue E|there exists y € Y such that y e ut}
yeY

ie.
Yi ! = {ueElut | Y# &}

Given two relations t,:E — F and t,:F — G, we denote by 7,7, the relation
E — G defined, for every ue E, by u(t,1,) = {we G|there exists ve F such that
veut, and wevmamremm
“Again the stardard notion of the composition of two partial functions — up to the
order of the factors — since we are using a ‘post-fixed’ notation. With a prefixed
notation, we could write 7, ° t, in place of 7,7,.

We now define some elementary properties which will frequently be used
without reference in subsequent chapters. The proofs are immediate and are left
to the reader.

Proposition 0.2
Let ¢: E — F be a partial function. Then

(1) the relation ¢ ~! is injective;

(2) if ¢ is an injective function, ¢ ! is an injective partial function and p¢ ! is

the identityon E; -
(3) if 9:E — Fis a surjective partial functioh, then ¢~ ! is the identity on F.

i
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Proposition 0.3
Let 7:E = F be a relation. Then for every X,Y< E, we have (XU Y)r
= Xtu Yt

In the case in which 7 is injective, we can be more precise.
Proposition 0.4

Let t: E — F be an injective relation (in pzrticular t = @~ ! where ¢: F — Eisa
partial function). Then for every X, Y ¢ E we have

(1 XuY)r=XtuYt

2 XnYyr=XtnYr

3) (X\Y)y=Xt\Yt
Proposition 0.5

Let ¢: E — F be a surjective partial function. Then forevery X < Eand Yc F,
wehave XonY=Xopn Yo 'o=(XnYo "o

Propeosition 0.6

Let E, F, G be three setsand a: G — E, f:G — F be two functions. Suppose that
ais surjective and that, for every s, t € G, s = taimplies sf = tB. Then the relation
o~ 'B:E — Fisafunction.

Apart from the ‘post-fixed’ notation used for functions and relations, we have
followed the terminclogy and notation of M. Lothaire for everything that
concerns free monoids and we have retained most of the notation of Eilenberg
elsewhere. This notation is consistent with the notation regularly used in
mathematics with one exception. The notation Z, designates not the p-adic
numbers but the group of integers module p which is regularly denoted by Z/pZ.
Finally, following an abuse of notation which is quite widely accepted, we shall
sometimes identify the singleton {s} with the element s.






Chapter 1

Semigroups, Languages
and Automata

The aim of this chapter is to give most of the definitions relating to the
semigroups and ianguages which will be used in subsequent chapters. Some
general statements on semigroups, almost all elementary, will also be found; the
only difficult statement of this chapter is Theorem 1.10, which is a consequence of
Ramsey’s theorem. The second part of the chapter gives a brief résumé of the
relations between automata, semigroups and languages. Finally, the last section
is devoted to the explicit calculation of two syntactic semigroups.

1. Semigroups

1.1. Semigroups, monoids, morphisms

A semigroup is a couple formed from a set S and an mtema] associaiive law of
composition defined on S. This law is generally denoted in a multiplicative way.
Given two semigroups S and T, a semigroup morphism ¢:S — Tis a function
from S into T'such that, forall x, y€ S, (xy)o = (x@)(yo).

A moneid is a triplet formed from a set M, an internal associative law of
composition defined over M and a distinct element of M, denoted by 1, such that,
for every xe M, 1x = x1 = x. In practice, we usually denote the monoid (or
semigroup) and the underlying set by the same letter. Given two monoids M and
N, a monoid morphism ¢: M — N is a function from M into N such that 1¢ = 1
and such that, for every x, ye M, (xy)¢ = (x@)(y¢). In the remainder of this book
the word ‘morphism’ denotes, according to context, a ssmigroup morphism or a
monoid morphism.

Given a semigroup S, we denote by S? the following monoid: if S is a monoid,
S' = S;if Sis notamonoid, ' = S U {1} together with the law » defined by x * y
=xyifx,yeSandl1+«x = x*1 = xforevery xe§".

The semigroups (or monoids), together with the morphism which we have just
defined, form a category. We shall see later that there exists another interesting
category whose objects are semigroups and whose morphisms will be called
‘relational morphisms’.
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In agreement with the general definition, we say that a morphism ¢:S — Tis an
isomorphism if there exists a morphism : T— S such that @y = Idg and Yo
= Idy. In fact a morphism is an isomorphism if and oniy if it is bijective. As a
general rule we shall identify two isomorphic semigroups. This rule applies in
particular to the definition of subsemigroups: we say that 3 is a subsemigroup of T
if there exists an injective morphism ¢:S — T. S is then identified with S¢ together
with the law induced by that of T. We shall say that T :: a quotient of S if there
exists a surjective morphism ¢:§ —» T.

A submonoid of a monoid M is a subsemigroup of } containing 1. If this
submonoid is a group, we say that it is a subgroup of M. In particular the set U of
invertible elements of M is the maximal subgroup of M, which is also called the
group of units of M. The notion of a subgroup of a monoid must not be confused
with that of a group within a semigroup S; a group within S is a subsemigroup of S
which is a group.

We say that a semigroup S divides a semigroup T (notation S < T)if Sis a
quotient of a subsemigroup of T.

Proposition 1.1
The division relation is transitive.

Proof

Suppose S, < S, < S§;. Then there exists a subsemigroup T, of §,, a
subsemigroup T, of S; and surjective morphisms n,:T; —» S; and n,:T, - S,.
Put T= T;n, ! Then Tis a subsemigroup of S; and S, is a quotient of T since

Trn,n, = Tyn, = S,. Then §, divides S;. ki

Given a family (S;);., of semigroups, the product

[1s:

iel

s,

iel

is the semigroup defined on the set

by the law (s;)icr- (Si)ier = (5:5i)ics- Since the semigroup | consisting of a single
element is the identity with respect to the product operation, following the usual

practice we put
n S,' = 1
€@
We note.that the product of a family of monoids is a monoid.

A semigroup S is generated by a subset P of § if every element of S can be
written in the form p, ...p, withn > Oand p, ... p,e P.

1.2. Idempotents, zero, ideal

An element e of a semigroup S is idempotent if e = 2. We shall denote by E(S)
the set of idempotents of S. As we shall see, the idempotents play a fundamental
role in the study of finite semigroups.
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We call a zero of S an element, denoted by 0, such that Os = sO = O for every
seS. If S is a semigroup, we denote by S° the semigroup obtained from S by the
addition of a zero: the support of S is the disjoint union of S and the singleton {0}
and the law (here denoted *) is defined by s * s’ = 55’ ifs,s’eSand s*0 =0*s5 =0
for every se S°.

A subset I of S is an ideal, a right i”~al or a left ideal if S'IS' = I, IS' = I or
S'I < I respectively.

A non-empty ideal I of a semigroup S is called minimal if, for every non-empty
ideal J of S,J = IimpliesJ = I. We note that if such an ideal exists it is necessarily
unique. The existence of a minimal ideal is assured in at least two important cases,
namely if S is finite or if S possesses a zero. In this last case {0} is the minimal ideal.
A non-empty ideal I {0} such that, for every non-empty ideal J of S. J I
implies J = {0} or J = I is called a 0-minimal ideal. It should be noted that a
semigroup can have several 0-minimal ideals.

1.3. Congruences

A congruence on a semigroup S is an equivalence relation ~ on S compatible
on the left and on the right with multiplication, i.e. such that, for every a,b,c€ S,
a ~ b implies ac ~ bc and ca ~ cb. Classically the quotient set S/~ is then
naturally provided with a semigroup structure. Three particular cases of
congruences will be extensively used in the remainder of this book.

Rees congruence

Let I be an ideal of S and let =, be the equivalence relation identifying all the
. elements of I and separating the other elements. Formally s=, s’ if and only if s
= s’ ors,s’€l. =,is then a congruence called the Rees congruence. Traditionally
we write S/I for the quotient of S by =,.

Syntactic congruence

Let P be a subset of S and = be an equivalence relation over S. We say that =
saturates P if P is the union of classes modulo =, which amounts to saying tha!.
for every u,ve S, u = v and ue P imply ve P. The syntactic congruence of P is the
congruence ~p over S defined by u~,v if and only if, for every s,teS’,
(sut € P <> svt € P). We can show (this is left as an exercise) that ~ , is the coarsest
congruence saturating P. This congruence is particularly important in the theory
of languages as we shall see a little later.

Nuclear co;zgruence
Let @:S— T be a semigroup morphism. We denote by ~, the (nuclear)
congruence associated with ¢ and defined by

u ~ vifand only ifup = ve

We then have the classical result.
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Proposition 1.2

Let ¢:S— T be a semigroup morphism and n:$ — §/~, be the natural
projection. Then there exists a unique morphism ¢:S/~ , - Tsuch that ¢ = np
Moreover. ¢ is an isomotphism of S/~ over Se.

Proof

The sitvation is summed up in the following diagram:

L S
n [
S/~,
Necessarily ¢ = n~ . It is now necessary to verify that ¢ is indeed a morphism.
Now if u,vesn o, there exists x, yesn ! such that x¢ = u and y¢ = v. Since
-1
x,yesn '

x~,v.1.e.x@ = yo. Thus @ is a function. Moreover, if x, e s,n ! and
x,€es,n !, it follows that x,x, €(s,s,)n ~! whence

(512)(520) = (X, 0)(x20) = (X1 X,3)p = (5,5)p
@ is injective; if s, ¢ = s,, there exists x, es,n~ ! and x,€s,7 " ! such that x, ¢

x,¢. Hence we can deduce x; ~, x,, i.e. x;n = x,7, whence s; = s,. Then ¢
induces an isomorphism of S/~ , over its image (S/~ )¢ = So.

Let (~;);c; be 2 family of congruences over a semigroup S. We denote by ~ the
intersection of the family (~ ,);c,; by definition u ~ v if and only if, for every i€,
U~

Proposition 1.3

With the preceding notation S/~ is a subsemigroup of

l—IS/~i
iel

Proof

We denote by n;:S — S/~ the projections and by
' n:S—[[S8/~:
iel

Proposition1.2.

the morphism defined by sn = (sn,);, for every s€ S. The nuclear congruence of n
is none other than ~, and thus S/~ is isomorphic to Sm in accoraance with

Proposition 1.4

Let ~, and ~ , be two congruences defined over a semigroup S. We suppose
that, forevery s,t€ S, s~ ,t implies s~ ,t. Then S/~ , is a quotient of S/ ~ .
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Proof
We denote by n,:5 - S/~ and n,:S — §/ ~ , the canonical morphisms. The
condition of the statement implies that = = n, " 'n, is a surjective morphism

S/~ =8/~

1 g/\,

~

1.4. Semigroups of transformations

If E is a set, we denote by .7 (E) the monoid of functions from E into E together
with the composition of functions. If E = {1,...,n}, we generally write .7, for the
monoid J (E).

A transformation semigroup over FE is a subsemigroup of Z{E). The
importance of transformation semigroups is emphasized by the following
proposition.

Proposition 1.5

Every semigroup is isomorphic to a transformation semigroup. In particular
every finite semigroup S is ISOI‘l’lOl‘pth to a subsemigroup of .7, for a certain
integer n.

Proof

We associate with each element s of S the right translation p,:S' — S* defined
by ap, = as for every ae S'. We can easily verify that the function s — p, thus
defined is an injective morphism from S into .7 (S*).

There follows another elementary theorem; it is concerned with the structure of
semigroups generated by a single element (sometimes called monogenic
semigroups).

Proposition 1.6

Let S be a semigroup generated by an element a. Then either § = (N\ {0}, +)or
S is finite. In the latter case there exist integers n > 0 and p > 0 such that a"
=a"*Pand S = {a,a?%,...,a"*?"'}. Then S contains a single idempotent, which is
the identity of the group G = {a",a"*!,...,a" "7 '},

Proof

If all the powers of a are distinct we clearly find ourselves in the first case.
Otherwise let n be the smallest positive integer such that there exists k satisfying
a" = a"** and let us write p for the smallest k satisfying this last relation. Then all



