'éhuvl'ch‘att‘ergy Top-down
Modular
Programming

- Udo W. Pooch

in FORTRAN
ovsotny oo vorss Wit WATFIV

B

Top-down,
Modular
Programming
in FORTRAN
with WATFIV

RAHUL CHATTERGY

University of Hawaii

UDO W. POOCH

Texas A&M University

WINTHROP PUBLISHERS, INC.
Cambridge, Massachusetts

Library of Congress Cutaloging in Publication Datu

Chattergy. R
Top-down. modular programming in FORTRAN with WATFIV.
Bibliography: p.
Includes index.

1. FORTRAN (Computer program language) 2. Modular programming. L. Pooch. U. W. 1l Title
OAT76.73.F25C43 001.6'424 79-20802
ISBN 0-87626-879- 3

1980 by Winthrop Publishers, Inc.
17 Dunster Street, Cambridge, Massachusetts 02138

All rights reserved. No part of this book may be reproduced in any form or by any means
without permission in writing from the publishers. Printed in the United States of America.

1009 8 7 6 5 4 3 2 1

Top-down,
Modular
Programming
in FORTRAN
with WATFIV

WINTHROP COMPUTER SYSTEMS SERIES

Gerald M. Weinberg, editor

SHNEIDERMAN

Software Psychology: Human Factors in Computer and Information Systems
GRAYBEAL AND POOCH

Simulation: Principles and Methods
WALKER

Problems for Computer Solutions Using FORTRAN
WALKER

Problems for Computer Solutions Using BASIC
CHATTERGY AND POOCH

Top-down, Modular Programming in FORTRAN with WATFIV
LINES AND BOEING

Minicomputer Systems
GREENFIELD

Architecture of Microcomputers
NAHIGIAN AND HODGES

Computer Games for Businesses, Schools, and Homes
MONRO

Basic BASIC
CONWAY AND GRIES

An Introduction to Programming:

A Structured Approach Using PL/I and PL/C, 3rd ed.
CRIPPS

An Introduction to Computer Hardware
COATS AND PARKIN

Computer Models in the Social Sciences
EASLEY

Primer for Small Systems Management
CONWAY

A Primer on Disciplined Programming Using PL/I, PL/CS, and PL/CT
FINKENAUR

COBOL for Students: A Programming Primer
WEINBERG, WRIGHT, KAUFFMAN, AND GOETZ

High Level Cobol Programming

CONWAY, GRIES, AND WORTMAN
Introduction to Structured Programming Using PL/I and SP/k

N

GILB
Software Metrics
GELLER AND FREEDMAN
Structured Programming in APL
CONWAY, GRIES, AND ZIMMERMAN
A Primer on PASCAL

CONWAY AND GRIES
Primer on Structured Programming Using PL/I, PL/C, and PL/CT

GILB AND WEINBERG
Humanized Input: Techniques for Reliable Keyed Input

To all of our ladies
who made our work necessary
vet worth the while

Foreword

It’s become a cliché in computing that a new FORTRAN textbook must be
justified in the light of the multitude of existing FORTRAN texts. Although I think
the practice is sensible, Top-down, Modular Programming in FORTRAN with
WATFIV needs no justification on those terms — neither from me nor the authors.
Why? Because, as you'll notice, the book is ‘‘in FORTRAN," not ‘‘on FOR-
TRAN." We don’t have to justify a book being ‘‘in English,”’ do we?

The book is in FORTRAN because a great many people ‘‘speak FORTRAN"’
and so wish to teach programming in that idiom. But the book is about program-
ming, and that is what any such textbook should be about these days. We’ve long
passed the time when we didn’t know the difference between a language manual and
a programming text.

At least we should have passed that time long ago, but many authors have not.
Therefore, a book such as this — in which the authors pay scrupulous attention to
style, design, and problem solving — is an extremely welcome addition to the
textbook scene. The amount of care that Chattergy and Pooch have put into the
choice and refinement of these examples is extraordinary. In their present state, the
examples reflect many iterations of criticism and revision by students and
colleagues — just what a hard-working textbook requires.

The choice of an introductory textbook always involves a great deal of personal
taste on the part of the instructor or department. Students differ; schools differ;
standards differ. But I'm confident that Top-down, Modular Programming in
FORTRAN with WATFI1V will strike a responsive chord in many places looking fo
something beyond the run-of-the-mill FORTRAN language textbook — something
that addresses both the instructor’s needs and the students’ needs in a unique style.

GERALD M. WEINBERG

Series Editor

Xi

Preface

The objective of this text is to show novice programmers general methods of
program development, test, and modification using the FORTRAN language as a
medium of expression. The language used is ANSI FORTRAN, with some features
of the WATFIV version of FORTRAN incorporated into the earlier chapters to assist
the novice programmer.

The spectrum of the FORTRAN language runs from ANSI FORTRAN to the
various recently developed. structured versions of FORTRAN. To select the most
useful version of FORTRAN. we considered some of the reasons for the popularity
of FORTRAN in an age when much more powerful languages. such as PASCAL and
PL/I, are readily available. We believe that one reason for this phenomenon is the
existence of a large collection of FORTRAN programs in various areas of science
and engineering. Another is the fact that FORTRAN is easy to learn and, conse-
quently. has a large following among scientists, engineers. statisticians. and other
numerical analysts. The versions of FORTRAN in use by these circles are very close
to ANSI FORTRAN and nowhere near the structured versions of FORTRAN. FOR-
TRAN 77 would have been our choice today if it had been invented in 1955. The
time for structured FORTRAN has passed, since more powertul structured program-
ming languages are already available. If structured programming were our goal, we
would be wise to invest our time and efforts in learning PL/1 or PASCAL and not
tinker with yet another version of FORTRAN.

Then why write another text on FORTRAN? We find that FORTRAN is still the
first programming language learned by many novice programmers. We also believe
that bad programming habits picked up early have a very long half-life. We have seen
many examples of this. One such case is that of a senior honors student in computer
science who wrote a cross assembler for a microprocessor in FORTRAN where ap-
proximately every third statement was an arithmetic IF. Honors students in computer
science presumably know everything about structured programming and other math-
ematical formalities of software engineering, but an arithmetic IF is still an old friend
they can rely on in a pinch. Hence our purpose is to show that programs of reasonable

xiii

Xiv Pretace

quality can be written, even in ANSI FORTRAN, by following some general princi-
ples of program development. In the past, the FORTRAN language has absorbed
more than its share of blame for the lack of discipline and organization of the pro-
grammers using it. The recent rejuvenation of FORTRAN is yet another reason for
this book. It appears that while we have been waiting for FORTRAN to fade away
like an old soldier. it has started to appear on personal computer systems. Because of
limited resources. most versions of FORTRAN on these systems are subsets of ANSI
FORTRAN and lack the constructs of structured programming languages. If the po-
tential for the use of the personal computer systems is fully realized. there will be
thousands of programmers who will learn to program in FORTRAN for the first time.
We hope that this text will provide them with a better introduction to programming in
FORTRAN than many other books currently available.

The method for program development we have used is the top-down. modular
method. This general approach to problem solving has been utilized for years: em-
pires have been built on the principle of divide and conquer. One of the most concise
descriptions of this approach'is given by Hoare: **Inside every large problem there is
a small problem struggling to get out™” (q.v. Plavboy, August 1978, p. 25). This
method is illustrated by examples and augmented by the top-down testing and modi-
fication of programs. The top-down, modular method is in no way bound to any
specific programming language. It is a way of organizing one’s thoughts, always
keeping one’s goal in focus. The ultimate code may be more structured in PL/I than
in ANSTFORTRAN. but the thought process that leads to this code must be organized
and independent of the programming language. Whenever psssible. we have pointed
out general concepts usetul in programming. such as the importance of data struc-
tures. the perils of sharing data rather than procedures. and the usefulness of the
principle of information hiding. Most texts on FORTRAN do not discuss these ideas.
but they are important since they show many of the limitations of FORTRAN. We
have. however. omitted the important topic of proving programs correct, since the
mathematical background of most novice programmers does not justity its inclusion.
In summary . our emphasis is on teaching the programmer the techniques of program
development as carly as possible.

We would also like to emphasize that this text is aimed primarily at amateur
programmers. According to Weinberg, 7 the greatest difference between an amateur
and a professional programmer lies in the ultimate clientele of the programs devel-
oped. A professional programmer never knows who the user(s) may be. He/she must
survey every conceivable requirement of the users and protect programs from all
modes of misuse. The amateur. on the other hand. programs for a small group of
users and very often only for him/herself. Thus the programming environment of an
amateur programmer is quite different from that of a professional. Fortunately for us.
the majority of programmers are amateurs. We also believe that the ditference be-
tween an amateur and a professional programmer is only one of degree and not of
Kind. Most professional programmers start out as good amateur programmers. Thus,
although we have emphasized some simple techniques of defensive programming
(checks for bounds violation of arrays. checks for simple errors in subprograms,

“Gerald M. Weinberg, The Psychology of Computer Programming (Princeton, N.J.: Vun
Nostrand-Reinhold, 1971), p. 122.

Preface XV

cte.). we have by no means discussed everything a professional programmer should
do to ensure foolproof programs.

Most of our examples are selected to demonstrate basic programming tech-
niques. such as the pairwise comparison or the binary search. The numerical exam-
ples are chosen in such a way that the underlying ideas can be simply explained by
graphical means. We caution the reader that this is not a text on numerical analysis.
We have discussed the mechanics of sorting. since the concept of sorting can be casily
grasped without any profound knowledge of mathematics. The basic sorting tech-
niques of exchange. insertion. and selection are demonstrated with simple examples.
These are followed by more advanced methods of Shell’s decreasing increment sort
and the Quick sort. References are cited for the reader interested in their mathematical
analysis. Discussion of random number generation includes a set of guidelines for
designing such generators. and two specific models are given with references to their
origin.

Many FORTRAN texts are written in sections starting with introductory con-
cepts and progressing to advanced concepts. After some experimentation with this
approach. we rejected it for its disadvantages. We found that programs written with
only “‘elementary™ concepts have awkward structures and, as such, are poor pro-
grams. Individuals becoming proficient in writing such programs have a difficult time
breaking bad habits and making full use of the “*advanced concepts™ at a later date.
For example. instead of

IFCERROR .LT. 0.0) ERROR = —ERROR
IF(ERROR .LE. 0.0001) GO TO 100

we have used
IFCABS(ERROR) .LE. 0.0001) STOP

A person who does not understand the meaning of a simple function such as ABS will
not find it easier to do so it it is simply postponed as an advanced concept relating to
built-in functions. Similarly, a person who can visualize the flow of control during
the execution of a program can understand the meaning of

IF(DATA .GT. 0.0) SUM = SUM + DATA

when the flow of control is explained to him/her in the proper context. Treating such
a statement as an advanced concept merely encourages the habit of branching at the
least possible excuse.

We have omitted certain teatures of FORTRAN such as double precision. or
complex and logical variables. Experience has shown that the beginner is rarely con-
fronted with problems where these features are important and hence is not particularly
motivated to learn them. We hope that when the need arises, the reader will be moti-
vated to find these features in the FORTRAN manual published by his/her vendor.

xvi Preface

If the reader has already visited the local computing center and fears for his/her
sanity. these fears are fully justified. The computing center is a strange world of
endemic chaos populated by demigods who speak the strange language of DD aster-
isks and DELETE. DELETEs. Unfortunately. the rituals vary from one center to the
next and cannot be summarized in one text. It is on-the-job learning that the reader
must acquire with whatever help is available. The reader will perhaps learn that com-
puter science 1s somewhat like economics. The same computer print-out can be ana-
lyzed by different computer experts and result in different erroneous conclusions.
The only note of encouragement that we can offer the reader is the motto of General
Joseph W. Stilwell: **lllegitimati non Carborundum.’” Freely translated by the gen-
eral, it means “*Don’t let the bastards grind you down. "+

We will consider our efforts well spent if. at the end of this text, the reader
comes to the following conclusions:

(1) The top-down. modular method is a wise approach to program development;

(11) Programs of reasonable quality can be written even in ANSI FORTRAN; and

(i11) There is more to programming than can be discussed in a simple FORTRAN
text.

If the reader does not share these views, let us disagree as friends and remember
that this too shall pass.

RAHUL CHATTERGY
Ubo W. PoocH

“Barbara Tuchman. Stibwell and the American Experience in China (New York: Macmillan
Publishing Co.. Inc.. 1971). p. 5.

Top-down,
Modular
Programming
in FORTRAN
with WATFIV

Contents

FOREWORD

PREFACE

INTRODUCTION TO DIGITAL COMPUTERS AND PROGRAMMING

VIS

INFORMAL INTRODUCTION TO FORTRAN

W 9 =

19O 19 1 19 19 19 19 19 19 19 19 19 19 |9

Functional Description of a Computer
Programming Languages

Compilers

Job Control Language
Communication with a Computer

Variables and Functions

Problem Solving Using FORTRAN
Period of a Pendulum

FORTRAN Program for the Period
Output from the Program
Variations of Input Data
Termination of Execution

Multiple Values of Input Data
Termination of a Loop

Program Structures

Grocery Bill

Top-down Composition of Programs
Smallest of Four Values

Exercises

X1

xiii

NN —

10
12
13
14
15
16
17
18
20
21
23
24
26

vii

viii

Contents

FORMAL DISCUSSION OF FORTRAN

[SSERVS RIS BEIV]

®© Nkt —

N}

19 —

FEN Y]

(USRS TS VS RS I SN SV R VU TS VS Y
o

vy

Formats of Statements

Arithmetic Operators

Constants

Variables

Arithmetic Expressions

Evaluation of Arithmetic Expressions
Assignment Statements

Logical Expressions

Transfer of Control

DO Loop

Data Output

Data Input

Input and Output of Character Data
Detecting the End of a Data Deck

Exercises

SIMPLE FORTRAN PROGRAMS

4.1 Lincar Interpolation
4.2 Range of Height Distribution of a Population
4.3 Balance of a Fixed-term Loan
4.4 Payroll Processing
4.5 Payments for a Fixed-term Loan
4.6 Counting Students in a Class
4.7 Exercises
ARRAYS
5.1 Single Subscripted Variables
5.2 Dimension Declaration
5.3 Salespersons of the Month
5.4 Implicit DO Loops
5.5 Smoothing a Time-series
5.6 Basic Sorting Techniques
5.6.1 Exchange Sort (Bubble Sort)
5.6.2 Selection Sort
5.6.3 Insertion Sort
5.7 Two Dimensional Arrays
5.8 Data Input/Output for Two Dimensional Arrays
5.9 Stock Manipulation
510 Program Structure and Data Structure

5.1

Exercises

28
29
29
30
33
33
34
35
37
40

50

‘notn
9 —

79

80

82
87
89
92
92
96
99
102
103
105
110
113

APPLICATIONS OF ARRAYS

6.1 Shell Sort

6.2 Program for Shell Sort

6.3 Generation of Random Numbers

6.4 Programs for Random Number Generation
6.5 Implementation of a Stack

6.6 Traveling Salesperson

6.7 Optimizing Storage Requirements

6.8 Exercises

SUBPROGRAMS

7.1 Built-in Functions

7.2 Statement Functions

7.3 Function Subprograms

7.4 Subroutines

7.5 Variable Dimensions

7.6 Data Sharing

7.7 EQUIVALENCE Statement
7.8 EXTERNAL Statement

7.9 BLOCK DATA Subprogram
7.10 Exercises

TOP-DOWN DESIGN OF MODULAR PROGRAMS

\

8.1 Salespersons of the Month
8.2 Plotting Graphs

8.3 Modification of Graph

8.4 Modification of Range

8.5 Modification of Plot

8.6 Top-down Modification
8.7 Quick Sort

8.8 Program for Quick Sort
8.9 Exercises

PROGRAMMING GUIDELINES

9.1 Criteria of Goodness

9.2 General Guidelines for Programming
9.3 Program Testing

9.4 Some Specific Rules for Programming

Contents

ix

115

115
117
123
125
131
133
137
138

143

144
145
148
155
159
160
162
163
164
164

166

166
170
178
180
181
185
187
189
193

197

197
198
199
199

x Contents

Appendix

A FORTRAN SYNTAX
Appendix

B BIBLIOGRAPHY

INDEX

201

205

[§9}
12

1.1

Introduction to
Digital Computers
and Programming

Digital computers are widely used for solving problems in such areas as science,
engineering, and business. This widespread use of computers is directly related to
their ability to process rapidly and accurately enormous quantities of data following
prespecified sequences of instructions. The process of creating these sequences of
instructions is called programming , and the languages used for specifying these in-
structions are called programming languages. A complete sequence of data process-
ing instructions considered as a single entity is called a program. In order to use a
computer, we must have a thorough knowledge of at least one such programming
language and the process of program development.

FUNCTIONAL DESCRIPTION OF A COMPUTER

The task of understanding what it means to program a computer and how it is pro-
grammed is simplified if we have some understanding of what a computer is and how
it works. A detailed structural description of a computer is, however, beyond the
scope of this text; fortunately it is not needed to program solution methods for com-
puter applications. A functional description of a computer will be sufficient for our
purpose (see Fig. 1.1). A computer contains a memory unit for storing information.
A memory unit can be thought of as a linear arrangement of memory cells, each cell
capable of storing information in coded form, using some internal computer code.
The information stored in these cells consists of instructions and data. The process-
ing unit consists of an arithmetic and logic unit and a control unit. It fetches instruc-
tions from the memory unit and executes them, in the process storing or fetching data
in or out of the memory unit. The instructions normally specify, explicitly or implic-
itly, the locations of data in memory cells. The processor fetches instructions from
successive memory cells, unless directed otherwise by special branch instructions. At
this point, it is not necessary to know the details of the interactions among the pro-

