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Introduction

An Introduction to DNA Self-Assembled Computer Design describes how bio-
logical molecules and nanotechnology can impact the ways we design, build,
and use computer systems. From macroscopic to molecular scales, self-
assembly can be found creating the complex structures and functions that
underpin our world. Self-assembly, however, is a process that receives little
coverage in traditional engineering yet has impact on almost every engineered
system. Biology is ripe with examples of complex self-assembly and these ex-
amples inspire us to approach the engineering of complex computer systems
in new ways. Written for a general technical audience, this book is intended
for readers who wish to learn what they need to understand this fast growing
and ground breaking field.

Readers who may have forgotten some of their introductory biology
and chemistry will find some help in Chapter 2, which is a survey of the self-
assembly process that we build upon in later chapters. Readers who are unfa-
miliar with techniques for integrated circuit design will benefit from a solid
review of microelectronics and VLSI design. To augment such a review we
provide a brief description of conventional circuit fabrication techniques at
the end of this chapter.

Device manufacturing at dimensions that approach tens of nanometers
has significant challenges that stem from the finite size and structure of mat-
ter. In spite of such challenges, commercial microprocessor manufacturers
continue to achieve ever smaller device feature sizes but at the cost of escalat-
ing manufacturing complexity. Thus, new methods for building computers
that can reduce manufacturing costs and achieve performance equal to or
greater than conventional systems will create new opportunities for comput-
ing. We will highlight some of these new opportunities and discuss how self-
assembly can enable new modes of computation in Chapter 7. First, we begin
our discussion of self-assembly by contrasting conventional top-down fabrica-
tion methods against the bottom-up techniques that will play a role in self-
assembled computer fabrication.



2 Introduction to DNA Self-Assembled Computer Design

1.1 Top-Down Versus Bottom-Up Fabrication

Top-down fabrication methods impose control over the placement, compo-
sition, and structure of materials from macroscopic bulk stock. Subtractive or
additive processes, such as those employed in photolithography, are funda-
mentally top-down because structure is created by selectively depositing or re-
moving bulk solids (or liquids) to form desired patterns. Imprint lithography
is also a top-down process since it uses a macroscopic pattern (i.e., a stamp or
master) to impress structure upon a uniform (bulk) surface. The common
feature of top-down processes is a continuous reduction in the characteristic
length scale of material structure from the macroscale to the molecular scale.
For example, the imprint master must mechanically interface with the macro-
scopic stamp aligner and, by a smooth transition of size scales from the bulk
stamp to the nanoscale pattern on the underside of the stam, come into com-
mensurate contact with the target surface. For this process to be useful, the
features of the stamp must convey nanoscale structural properties to the sur-
face with high fidelity (e.g., the target surface must take on the same pitch, as-
pect ratio, etc. as the features on the stamp pattern.) The inherent challenge
with top-down fabrication is that as feature sizes approach molecular scales
(ie., 0.1 to 10 nm) materials no longer behave in the same rational and de-
terministic fashion that we encounter at macroscopic dimensions. Thus, a
smooth transition from the macroscale to the molecular scale will require in-
novation to maintain the traditional device scaling (e.g., from 45 to 32 nm)
that has driven the computer manufacturing industry.

The alternative to top-down fabrication is bottom-up fabrication
whereby structure is created by the assembly of precursors (or blocks) that
grow outward from a nucleation site. The everyday variety of bottom-up fab-
rication uses precursors built from top-down methods. For example, the
stones in a stone wall are laid in place such that the wall grows outward from
its foundation. Contrast this method with a top-down method where a
wooden form is built to define the wall. In fact, form-built structures rely on
both top-down fabrication (e.g., the form) and bottom-up fabrication
through the molecular adhesion of the fill material (e.g., concrete). Unlike
top-down fabrication, bottom-up processes typically rely on local interac-
tions between precursors (and their environment) alone to create large-scale
structure.

Self-assembly is a mechanism for bottom-up fabrication in which the
precursors are only weakly controlled by external environmental parameters
such as temperature or reaction time. A comprehensive survey of bottom-up
self-assembly is beyond the scope of this introduction but can be found in any
good text on chemical synthesis. Fundamentally, thermodynamics governs



