Data 44
Structures
and £
Network
Algorithms

Bell Laboratories
Murray Hill, New Jersey

Data Structures
and Network Algorithms

ROBERT ENDRE TARJAN

Bell Laboratories
Murray Hill, New Jersey

SOCIETY for INDUSTRIAL and
APPLIED MATHEMATICS « 1983

PHILADELPHIA, PENNSYLVANIA 19103

Copyright © 1983 by Society for Industrial and Applied Mathematics.

Library of Congress Catalog Card Number: 83-61374.
ISBN: 0-89871-187-8

Preface

In the last fifteen years there has been an explosive growth in the field of
combinatorial algorithms. Although much of the recent work is theoretical in
nature, many newly discovered algorithms are quite practical. These algorithms
depend not only on new results in combinatorics and especially in graph theory, but
also on the development of new data structures and new techniques for analyzing
algorithms. My purpose in this book is to reveal the interplay of these areas by
explaining the most efficient known algorithms for a selection of combinatorial
problems. The book covers four classical problems in network optimization, includ-
ing a development of the data structures they use and an analysis of their running
times. This material will be included in a more comprehensive two-volume work I
am planning on data structures and graph algorithms.

My goal has been depth, precision and simplicity. I have tried to present the most
advanced techniques now known in a way that makes them understandable and
available for possible practical use. I hope to convey to the reader some appreciation
of the depth and beauty of the field of graph algorithms, some knowledge of the best
algorithms to solve the particular problems covered, and an understanding of how to
implement these algorithms.

The book is based on lectures delivered at a CBMS Regional Conference at the
Worcester Polytechnic Institute (WPI) in June, 1981. Tt also includes very recent
unpublished work done jointly with Dan Sleator of Bell Laboratories. I would like to
thank Paul Davis and the rest of the staff at WPI for their hard work in organizing
and running the conference, all the participants for their interest and stimulation,
and the National Science Foundation for financial support. My thanks also to Cindy
Romeo and Marie Wenslau for the diligent and excellent job they did in preparing
the manuscript, to Michael Garey for his penetrating criticism, and especially to
Dan Sleator, with whom it has been a rare pleasure to work.

vii

Contents

Prefame .« o vvmw 15 571 t BB R B S B S s 2 s s mmmEE R s 8 s vii
Chapter 1
FOUNDATIONS
L.l Introduction 1
1.2. Computational complexity 2
1.3. Primitive data structures 7
1.4. Algorithmic notation 12
L5. Treesandgraphs 14
Chapter 2
DISJOINT SETS
2.1. Disjoint sets and compressed trees 23
2.2. An amortized upper bound for path compression 24
2.3, REMATKS: « & & 5 55 0 5 0 5 5 5 5 5 5 coie m ot e oo orss w55 s 5 % 29
Chapter 3
HEAPS
3.1. Heaps and heap-ordered trees 33
L 34
33. Leftistheaps 38
34. Remarks 42
Chapter 4
SEARCH TREES
4.1. Sorted sets and binary searchtrees 45
4.2. Balanced binarytrees 48
4.3. Self-adjusting binary trees 53
Chapter 5
LINKING AND CUTTING TREES
5.1. The problem of linking and cutting trees 59
5.2. Representing trees assetsof paths 60
5.3. Representing paths as binarytrees 64
54. Remarks 70

vi CONTENTS

Chapter 6

MINIMUM SPANNING TREES
6.1. Thegreedymethod 71
6.2. Three classical algorithms 72
6.3. The round robin algorithm 77
6.4. Remarks . . . o o v s o 5 65 6 3 s s @@ mam s 5 8 8 8 8 5 8w 81

Chapter 7

SHORTEST PATHS
7.1. Shortest-path trees and labeling and scanning 85
7.2. Efficient scanningorderso 89
73, AIlPairs « w s ¢ s s 5 5 s mmmmmmn s & ¢ 0 0 0 0 wowawmwoe 94

Chapter 8

NETWORK FLOWS
8.1. Flows, cuts, and augmenting paths 97
8.2. Augmenting by blockingflows00 102
8.3. Finding blocking flows 104
8.4. Minimumcostflows 108

Chapter 9

MATCHINGS
9.1. Bipartite matchings and network flows 113
9.2. Alternatingpaths 114
9.3. Blossoms e 115
9.4. Algorithms for nonbipartite matchmg 119

References o o o o o e e e e e e e e e 125

CHAPTER 1

Foundations

L.1. Introduction. In this book we shall examine efficient computer algorithms
for four classical problems in network optimization. These algorithms combine
results from two areas: data structures and algorithm analysis, and network
optimization, which itself draws from operations research, computer science and
graph theory. For the problems we consider, our aim is to provide an understanding
of the most efficient known algorithms.

We shall assume some introductory knowledge of the areas we cover. There are
several good books on data structures and algorithm analysis [1], [35], [36], [44],
[49], [58] and several on graph algorithms and network optimization [8], [11],
[21], [38], [39], [41], [50]; most of these touch on both topics. What we shall stress
here is how the best algorithms arise from the interaction between these areas.
Many presentations of network algorithms omit all but a superficial discussion of
data structures, leaving a potential user of such algorithms with a nontrivial
programming task. One of our goals is to present good algorithms in a way that
makes them both easy to understand and easy to implement. But there is a deeper
reason for our approach. A detailed consideration of computational complexity
serves as a kind of “Occam’s razor”: the most efficient algorithms are generally
those that compute exactly the information relevant to the problem situation. Thus
the development of an especially efficient algorithm often gives us added insight into
the problem we are considering, and the resultant algorithm is not only efficient but
simple and elegant. Such algorithms are the kind we are after.

Of course, too much detail will obscure the most beautiful algorithm. We shall
not develop FORTRAN programs here. Instead, we shall work at the level of simple
operations on primitive mathematical objects, such as lists, trees and graphs. In
§§1.3 through 1.5 we develop the necessary concepts and introduce our algorithmic
notation. In Chapters 2 through 5 we use these ideas to develop four kinds of
composite data structures that are useful in network optimization.

In Chapters 6 through 9, we combine these data structures with ideas from graph
theory to obtain efficient algorithms for four network optimization tasks: finding
minimum spanning trees, shortest paths, maximum flows, and maximum match-
ings. Not coincidentally, these are four of the five problems discussed by Klee in his
excellent survey of network optimization [34]. Klee’s fifth problem, the minimum
tour problem, is one of the best known of the so-called “NP-complete” problems; as
far as is known, it has no efficient algorithm. In §1.2, we shall review some of the
concepts of computational complexity, to make precise the idea of an efficient
algorithm and to provide a perspective on our results (see also [53], [55]).

We have chosen to formulate and solve network optimization problems in the
setting of graph theory. Thus we shall omit almost all mention of two areas that

2 CHAPTER 1

provide alternative approaches: matroid theory and linear programming. The books
of Lawler [38] and Papadimitriou and Steiglitz [41] contain information on these
topics and their connection to network optimization.

1.2. Computational complexity. In order to study the efficiency of algorithms,
we need a model of computation. One possibility is to develop a denotational
definition of complexity, as has been done for program semantics [19], but since this
is a current research topic we shall proceed in the usual way and define complexity
operationally. Historically the first machine model proposed was the Turing
machine [56]. In its simplest form a Turing machine consists of a finite state
control, a two-way infinite memory tape divided into squares, each of which can
hold one of a finite number of symbols, and a read/write head. In one step the
machine can read the contents of one tape square, write a new symbol in the square,
move the head one square left or right, and change the state of the control.

The simplicity of Turing machines makes them very useful in high-level theoreti-
cal studies of computational complexity, but they are not realistic enough to allow
accurate analysis of practical algorithms. For this purpose a better model is the
random-access machine [1], [14]. A random-access machine consists of a finite
program, a finite collection of registers, each of which can store a single integer or
real number, and a memory consisting of an array of n words, each of which has a
unique address between 1 and n (inclusive) and can hold a single integer or real
number. In one step, a random-access machine can perform a single arithmetic or
logical operation on the contents of specified registers, fetch into a specified register
the contents of a word whose address is in a register, or store the contents of a
register in a word whose address is in a register.

A similar but somewhat less powerful model is the pointer machine [35], [46],
[54]. A pointer machine differs from a random-access machine in that its memory
consists of an extendable collection of nodes, each divided into a fixed number of
named fields. A field can hold a number or a pointer to a node. In order to fetch
from or store into one of the fields in a node, the machine must have in a register a
pointer to the node. Operations on register contents, fetching from or storing into
node fields, and creating or destroying a node take constant time. In contrast to the
case with random-access machines, address arithmetic is impossible on pointer
machines, and algorithms that require such arithmetic, such as hashing [36], cannot
be implemented on such machines. However, pointer machines make lower bound
studies easier, and they provide a more realistic model for the kind of list-processing
algorithms we shall study. A pointer machine can be simulated by a random-access
machine in real time. (One operation on a pointer machine corresponds to a constant
number of operations on a random-access machine.)

All three of these machine models share two properties: they are sequential, i.e.,
they carry out one step at a time, and deterministic, i.e., the future behavior of the
machine is uniquely determined by its present configuration. Outside this section we
shall not discuss parallel computation or nondeterminism, even though parallel
algorithms are becoming more important because of the novel machine architec-
tures made possible by very large scale integration (VLSI), and nondeterminism of

FOUNDATIONS 3

various kinds has its uses in both theory and practice [1], [19], [23]. One important
research topic is to determine to what extent the ideas used in sequential,
deterministic computation carry over to more general computational models.

An important caveat concerning random-access and pointer machines is that if
the machine can manipulate numbers of arbitrary size in constant time, it can
perform hidden parallel computation by encoding several numbers into one. There
are two ways to prevent this. Instead of counting each operation as one step (the
uniform cost measure), we can charge for an operation a time proportional to the
number of bits needed to represent the operands (the logarithmic cost measure).
Alternatively we can limit the size of the integers we allow to those representable in
a constant times log n bits, where 7 is a measure of the input size, and restrict the
operations we allow on real numbers. We shall generally use the latter approach; all
our algorithms are implementable on a random-access or pointer machine with
integers of size at most n° for some small constant ¢ with only comparison, addition,
and sometimes multiplication of input values allowed as operations on real numbers,
with no clever encoding.

Having picked a machine model, we must select a complexity measure. One
possibility is to measure the complexity of an algorithm by the length of its program.
This measure is static, i.e., independent of the input values. Program length is the
relevant measure if an algorithm is only to be run once or a few times, and this
measure has interesting theoretical uses [10], [37], [42], but for our purposes a
better complexity measure is a dynamic one, such as running time or storage space
as a function of input size. We shall use running time as our complexity measure;
most of the algorithms we consider have a space bound that is a linear function of
the input size.

In analyzing running times we shall ignore constant factors. This not only
simplifies the analysis but allows us to ignore details of the machine model, thus
giving us a complexity measure that is machine independent. As Fig. 1.1 illustrates,
for large enough problem sizes the relative efficiencies of two algorithms depend on
their running times as an asymptotic function of input size, independent of constant
factors. Of course, what “large enough” means depends upon the situation; for some
problems, such as matrix multiplication [15], the asymptotically most efficient
known algorithms beat simpler methods only for astronomical problem sizes. The
algorithms we shall consider are intended to be practical for moderate problem
sizes. We shall use the following notation for asymptotic running times: If fand g
are functions of nonnegative variables n, m, - - - we write “fis O(g)” if there are
positive constants ¢, and ¢, such that f(n,m, - - -) =cig(n,m, - - -) + ¢, for all
values of n, m, - . . . We write “fis Ug)” if gis O(f), and “f'is O(g)” if fis O(g)
and Q(g).

We shall generally measure the running time of an algorithm as a function of the
worst-case input data. Such an analysis provides a performance guarantee, but it
may give an overly pessimistic estimate of the actual performance if the worst case
occurs rarely. An alternative is an average-case analysis. The usual kind of
averaging is over the possible inputs. However, such an analysis is generally much
harder than worst-case analysis, and we must take care that our probability

4 CHAPTER 1

SIZE
20 50 100 200 500 1000
COMPLEXITY
1000n 02 05 1 2 5 1
sec sec sec sec sec sec
jooonig n .09 3 .6 15 45 10
sec sec sec sec sec sec
loon2 .04 25 | 4 25 2
sec sec secC sec sec min
1on3 .02 | 10 | 2| 27
sec sec sec min min hr
nlgn .4 Il 220 125 5x108
sec hr DAYS CENT CENT
2n/3 .0001 A 2.7 3x104
sec sec hr CENT
2n | 35 3x104
sec YR CENT
3N 58 2x10°
min CENT

FIG. 1.1. Running time estimates. One step takes one microsecond, Ign denotes log,n.

distribution accurately reflects reality. A more robust approach is to allow the
algorithm to make probabilistic choices. Thus for worst-case input data we average
over possible algorithms. For certain problem domains, such as table look-up [9],
[57], string matching [31], and prime testing [3], [43], [48], such randomized
algorithms are either simpler or faster than the best known deterministic
algorithms. For the problems we shall consider, however, this is not the case.

A third kind of averaging is amortization. Amortization is appropriate in
situations where particular algorithms are repeatedly applied, as occurs with
operations on data structures. By averaging the time per operation over a worst-case
sequence of operations, we sometimes can obtain an overall time bound much
smaller than the worst-case time per operation multiplied by the number of
operations. We shall use this idea repeatedly.

By an efficient algorithm we mean one whose worst-case running time is bounded
by a polynomial function of the input size. We call a problem tractable if it has an
efficient algorithm and intractable otherwise, denoting by P the set of tractable
problems. Cobham [12] and Edmonds [20] independently introduced this idea.
There are two reasons for its importance. As the problem size increases, polynomial-
time algorithms become unusable gradually, whereas nonpolynomial-time algo-
rithms have a problem size in the vicinity of which the algorithm rapidly becomes
completely useless, and increasing by a constant factor the amount of time allowed
or the machine speed doesn’t help much. (See Fig. 1.2.) Furthermore, efficient
algorithms usually correspond to some significant structure in the problem, whereas
inefficient algorithms often amount to brute-force search, which is defeated by
combinatorial explosion.

FOUNDATIONS 5
TINE fsen 102 sec 104sec 108 sec 108sec 10'9sec
COMPLEXITY (1.7 min) (2.7 hn) (12 pAYS) (3YEARS) (3 CENT)
000N 103 105 107 109 io! 10'3
1000n Ign 1.4x102 7.7x103 5.2x10% 3.9x107 3.1x10° 2.6xi0"
loon2 102 103 [ohd 105 108 107
Ion3 46 2.1x102 103 4.6x103 2.1xl0% 105
nlgn 22 36 54 79 12 156
2n/3 59 79 99 119 139 159
2n 19 26 33 39 46 53
3n 12 16 20 25 29 33

FIG. 1.2. Maximum size of a solvable problem. A

JSactor of ten increase in machine speed corresponds
to a factor of ten increase in time.

Figure 1.3 illustrates what we call the “spectrum of computational complexity,” a
plot of problems versus the complexities of their fastest known algorithms. There
are two regions, containing the tractable and intractable problems. At the top of the
plot are the undecidable problems, those with no algorithms at all. Lower are the
problems that do have algorithms but only inefficient ones, running in exponential
or superexponential time. These intractable problems form the subject matter of
high-level complexity. The emphasis in high-level complexity is on proving non-

UNDECIDABLE

SUPEREXPONENTIAL

EXPONENTIAL

!

HILBERT'S TENTH PROBLEM | 18]

PRESBURGER ARITHMETIC [22]

CIRCULARITY OF ATTRIBUTE GRAMMARS [27]

INTRACTABLE NP-COMPLETE PROBLEMS [23]
TRACTABLE P
1 POLYNOMIAL | P
LINEAR PROGRAMMING [2,33]
h3 4
MATRIX MULTIPLICATION [i5]
n2 4
n log n{ SORTING [36]

nd

- SELECTION([5,47]

FIG. 1.3. The spectrum of computational complexity.

6 CHAPTER 1

polynomial lower bounds on the time or space requirements of various problems.
The machine model used is usually the Turing machine; the techniques used,
simulation and diagonalization, derive from Godel’s incompleteness proof [24], [40]
and have their roots in classical self-reference paradoxes.

Most network optimization problems are much easier than any of the problems
for which exponential lower bounds have been proved; they are in the class NP of
problems solvable in polynomial time on a nondeterministic Turing machine. A
more intuitive definition is that a problem is in NP if it can be phrased as a yes-no
question such that if the answer is “yes” there is a polynomial-length proof of this.
An example of a problem in NP is the minimum tour problem: given n cities and
pairwise distances between them, find a tour that passes through each city once,
returns to the starting point, and has minimum total length. We can phrase this as a
yes-no question by asking if there is a tour of length at most x; a “yes” answer can
be verified by exhibiting an appropriate tour.

Among the problems in NP are those that are hardest in the sense that if one has a
polynomial-time algorithm then so does every problem in NP. These are the
NP-complete problems. Cook [13] formulated this notion and illustrated it with
several NP-complete problems; Karp [29], [30] established its importance by
compiling a list of important problems, including the minimum tour problem, that
are NP-complete. This list has now grown into the hundreds; see Garey and
Johnson’s book on NP-completeness [23] and Johnson’s column in the Journal of
Algorithms [28]. The NP-complete problems lie on the boundary between intract-
able and tractable. Perhaps the foremost open problem in computational complexity
is to determine whether P = NP; that is, whether or not the NP-complete problems
have polynomial-time algorithms.

The problems we shall consider all have efficient algorithms and thus lie within
the domain of low-level complexity, the bottom half of Fig. 1.3. For such problems
lower bounds are almost nonexistent; the emphasis is on obtaining faster and faster
algorithms and in the process developing data structures and algorithmic techniques
of wide applicability. This is the domain in which we shall work.

Although the theory of computational complexity can give us important informa-
tion about the practical behavior of algorithms, it is important to be aware of its
limitations. An example that illustrates this is /inear programming, the problem of
maximizing a linear function of several variables constrained by a set of linear
inequalities. Linear programming is the granddaddy of network optimization
problems; indeed, all four of the problems we consider can be phrased as linear
programming problems. Since 1947, an effective, but not efficient algorithm for this
problem has been known, the simplex method [16]. On problems arising in practice,
the simplex method runs in low-order polynomial time, but on carefully constructed
worst-case examples the algorithm takes an exponential number of arithmetic
operations. On the other hand, the newly discovered ellipsoid method [2], [33],
which amounts to a very clever n-dimensional generalization of binary search, runs
in polynomial time with respect to the logarithmic cost measure but performs very
poorly in practice [17]. This paradoxical situation is not well understood but is
perhaps partially explained by three observations: (i) hard problems for the simplex
method seem to be relatively rare; (ii) the average-case running time of the ellipsoid

FOUNDATIONS 7

method seems not much better than that for its worst case; and (iii) the ellipsoid
method needs to use very high precision arithmetic, the cost of which the logarith-
mic cost measure underestimates.

1.3. Primitive data structures. In addition to integers, real numbers and bits (a
bit is either true or false), we shall regard certain more complicated objects as
primitive. These are intervals, lists, sets, and maps. An interval [j.. k] is a
sequence of integers j, j + 1, - .,k We extend the notation to represent
arithmetic progressions: [j, k . . I] denotes the sequencej,j + A,j + 24, -« -, j+
iA, where A = k — jand i = L(/ — j)/AJ . (If x is a real number, L xJ denotes the
largest integer not greater than x and [x1 denotes the smallest integer not less than
x.) If i <0, the progression is empty; if j = k, the progression is undefined. We use €
to denote membership and ¢ to denote nonmembership in intervals, lists and sets;
thus for instance i € [j . . k] means i is an integer such that j < i < k.

Alistqg=[x,x,+-+-,x,]isa sequence of arbitrary elements, some of which
may be repeated. Element x, is the head of the list and X,is the tail; x, and x, are the
ends of the list. We denote the size n of the list by|q|. An ordered pair [x,, x,] is a
list of two elements; [] denotes the empty list of no elements. There are three
fundamental operations on lists:

Access. Given a list g = [x,, Xy, + + -, Xx,] and an integer /, return the ith element
q(i) = x;onthelist. If i ¢ [1 . . n], q(7) has the special value null.

Sublist. Givenalistq = [x,, x,, - - -, x,] and a pair of integers i and j, return the
list gl .. 7] = [y Xppqs = = 4 ;1. If j is missing or greater than n it has an
implied value of n; similarly if i is missing or less than one it has an implied
value of 1. Thus for instance ¢[3 . .] = [x3, x4 - - -, x,]. We can extend this
notation to denote sublists corresponding to arithmetic progressions.

Concatenation. Given two lists g = [xi, X3 « + -, x,]and r = [y, p,, - - - s Vil
return their concatenationq & r = [x,,x,, - - - , Xps Vs V2s = = 3 Vol

We can represent arbitrary insertion and deletion in lists by appropriate combina-
tions of sublist and concatenation. Especially important are the special cases of
access, sublist and concatenation that manipulate the ends of a list:

Access head. Given a list g, return g(1).

Push. Given a list g and an element x, replace g by [x] & gq.
Pop. Given a list g, replace g by g[2 . .].

Access tail. Given a list g, return g(| g).

Inject. Given a list g and an element x, replace g by g & [x].
Eject. Given a list g, replace g by g[. .| g| —1].

A list on which the operations access head, push and pop are possible is a stack.
With respect to insertion and deletion a stack functions in a last-in, first-out
manner. A list on which access head, inject and pop are possible is a queue. A queue
functions in a first-in, first-out manner. A list on which all six operations are
possible is a deque (double-ended queue). If all operations but eject are possible the
list is an output-restricted deque. (See Fig. 1.4.)

8 CHAPTER 1

(a)

f;[xI X2, Xn]
(b) ([x| ,xz,---.xn]/

(c) >~[x, ,x2.~--,xn]/

\ ‘}
(d) X) X2, X
d '/[1 X2 n]\'
FI1G. 1.4. Types of lists. (a) Stack. (b) Queue. (c) Output-restricted deque. (d) Deque.

A sets = {x,, x,, - - -, x,} is a collection of distinct elements. Unlike a list, a set
has no implied ordering of its elements. We extend the size notation to sets; thus
|s| = n. We denote the empty set by { }. The important operations on sets are union
U, intersection N, and difference —: if s and ¢ are sets, s — ¢ is the set of all elements
in s but not in 2. We extend difference to lists as follows: if gisa listand sa set,g — s
is the list formed from g by deleting every copy of every element in s.

A map f=1{[x;, »], [x2 1], - + +, [V.]}is a set of ordered pairs no two having
the same first coordinate (head). The domain of f is the set of first coordinates,
domain (f) = {x,, x,, - - -, x,}. The range of f is the set of second coordinates
(tails), range () = {y1, 5, + + « , yal. We regard fas a function from the domain to
the range; the value f(x;) of fat an element x; of the domain is the corresponding
second coordinate y;. If x ¢ domain (f'), f(x) = null. The size|f|of fis the size of its
domain. The important operations on functions are accessing and redefining
function values. The assignment f(x) := y deletes the pair [x, f(x)] (if any) from f
and adds the pair [x, y]. The assignment f(x) := null merely deletes the pair [x,
f(x)] (if any) from f. We can regard a list ¢ as a map with domain [1..|q]].

There are several good ways to represent maps, sets, and lists using arrays and
linked structures (collections of nodes interconnected by pointers). We can repre-
sent a map as an array of function values (if the domain is an interval or can be
easily transformed into an interval or part of one) or as a node field (if the domain is
a set of nodes). These representations correspond to the memory structures of
random-access and pointer machines respectively; they allow accessing or redefin-
ing f(x) given x in O(1) time. We shall use functional notation rather than dot
notation to represent the values of node fields; depending upon the circumstances
f(x) may represent the value of map f at x, the value stored in position x of array f,
the value of field fin node x, or the value returned by the function f when applied to
x. These are all just alternative ways of representing functions. We shall use a small
circle to denote function composition: f o g denotes the function defined by (f ° g)

(x) = f(g(x)).

FOUNDATIONS 9

We can represent a set by using its characteristic function over some universe or
by using one of the list representations discussed below and ignoring the induced
order of the elements. If s is a subset of a universe U, its characteristic function Xs
over Uis x, (x) = true if x € S, false if x € U — S. We call the value of x, (x) the
membership bit of x (with respect to s). A characteristic function allows testing for
membership in O(1) time and can be updated in O(1) time under addition or
deletion of a single element. We can define characteristic functions for lists in the
same way. Often a characteristic function is useful in combination with another set
or list representation. If we need to know the size of a set frequently, we can
maintain the size as an integer; updating the size after a one-element addition or
deletion takes O(1) time.

We can represent a list either by an array or by a linked structure. The easiest
kind of list to represent is a stack. We can store a stack g in an array aq, maintaining
the last filled position as an integer k. The correspondence between stack and array
is (i) = aq (k + 1 — i);if k = 0 the stack is empty. With this representation each of
the stack operations takes O(1) time. In addition, we can access and even redefine
arbitrary positions in the stack in O(1) time. We can extend the representation to
deques by keeping two integers j and k indicating the two ends of the deque and
allowing the deque to “wrap around” from the back to the front of the array. (See
Fig. 1.5.) The correspondence between deque and array is q(i) = aq(((j + i — 1)
mod) + 1), where 7 is the size of the array and x mod y denotes the remainder of x
when divided by y. Each of the deque operations takes O(1) time. If the elements of
the list are nodes, it is sometimes useful to have a field in each node called a list
index indicating the position of the node in the array. An array representation of a
list is a good choice if we have a reasonably tight upper bound on the maximum size
of the list and we do not need to perform many sublist and concatenate operations;
such operations may require extensive copying.

There are many ways to represent a list as a linked structure. We shall consider
eight, classified in three ways: as endogenous or exogenous, single or double and
linear or circular. (See Fig. 1.6.) We call a linked data structure defining an
arrangement of nodes endogenous if the pointers forming the “skeleton” of the
structure are contained in the nodes themselves and exogenous if the skeleton is
outside the nodes. In a single list, each node has a pointer to the next node on the list

@ el [T T T T T]
1
o] [T 1T TulrePolabs]
4 4
k j

FIG. 1.5. Array representation of lists. (a) Stack. (b) Deque that has wrapped around the array.

10 CHAPTER 1

ENDOGENOUS EXOGENOUS

Lty

X) X2 X3 X4

b

=

1
/]

!

Xa X, Xp Xz '/
e K S e EY S 2 KIRY

Di
-
T+

X,

X2

3] e)
K%
[¢]y

Xq X3

(d)

Xq

FIG. 1.6. Linked representations of lists. Missing pointers are null. (a) Single linear. (b) Single
circular. (c) Double linear. (d) Double circular.

(its successor); in a double list, each node also has a pointer to the previous node (its
predecessor). In a linear list, the successor of the last node is null, as is the
predecessor of the first node; in a circular list, the successor of the last node is the
first node and the predecessor of the first node is the last node. We access a linear
list by means of a pointer to its head, a circular list by means of a pointer to its tail.

Figure 1.7 indicates the power of these representations. A single linear list
suffices to represent a stack so that each access head, push, or pop operation takes
O(1) time. A single circular list suffices for an output-restricted deque and also
allows concatenation in O(1) time if we allow the concatenation to destroy its inputs.
(All our uses of concatenation will allow this.) Single linking allows insertion of a
new element after a specified one or deletion of the element after a specified one in
O(1) time; to have this capability if the list is exogenous we must store in each list
element an inverse pointer indicating its position in the list. Single linking also
allows scanning the elements of a list in order in O(1) time per element scanned.

Double linking allows inserting a new element before a given one or deleting any
element. It also allows scanning in reverse order. A double circular list suffices to
represent a deque.

FOUNDATIONS 11

SINGLE DOUBLE
LINEAR | CIRCULAR | LINEAR | CIRCULAR
ACCESS HEAD YES YES YES YES
PUSH YES YES YES YES
POP YES YES YES YES
ACCESS TAIL NO YES NO YES
INJECT NO YES NO YES
EJECT NO NO NO YES
INSERT AFTER | YES(a) YES(Q) YES(a) YES(Q)
INSERT BEFORE NO NO YES(a) YES(a)
DELETE AFTER | YES(Q) YES(Q) YES(Q) YES(Q)
DELETE NO NO YES(Q) YES(Q)
CONCATENATE NO YES NO YES
REVERSE NO NO NO YES(b)
FORWARD SCAN YES YES YES YES
BACKWARD SCAN NO NO YES YES

FIG. 1.7. The power of list representations. “Yes” denotes an O (1)—time operation (O (1) time per
element for forward and backward scanning). (a) If the representation is exogenous, insertion and
deletion other than at the ends of the list require the position of the element. Inverse pointers furnish
this information. (b) Reversal requires a modified representation. (See Fig. 1.8))

Endogenous structures are more space-efficient than exogenous ones, but they
require that a given element be in only one or a fixed number of structures at a time.
The array representation of a list can be regarded as an exogenous structure.,

Some variations on these representations are possible. Instead of using circular
linking, we can use linear linking but maintain a pointer to the tail as well as to the
head of a list. Sometimes it is useful to make the head of a list a special dummy node
called a header, this eliminates the need to treat the empty list as a special case.

Sometimes we need to be able to reverse a list, i.e. replace ¢ = [x,, x5, + - - , X,)
by reverse (¢) = [x,, X,_,, - - -, x,]. To allow fast reversal we represent a list by a
double circular list accessed by a pointer to the tail, with the following modification:
each node except the tail contains two pointers, to its predecessor and successor, but
in no specified order; only for the tail is the order known. (See Fig. 1.8.) Since any
access to the list is through the tail, we can establish the identity of predecessors and
successors as nodes are accessed in O(1) time per node. This representation allows
all the deque operations, concatenation and reversal to be performed in O(1) time
per operation.

Xs X Xp X3 X4

FIG. 1.8. Endogenous representation of a reversible list.

