common
algorithms

Pln 3 I ‘
with programs for reading

David V. Moffat

Common Algorithms
in Pascal

with Programs
for Reading

DAVID V. MOFFAT

PRENTICE-HALL, INC., Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data

Moffat, David V.
Common algorithms in Pascal with programs for reading.
Bibliography: p. 225
Includes index.
1. PASCAL (Computer program language) 2. Algorithms.
I. Title.
QA76.73.P2M63 1984 001.64'25 82-18623
ISBN 0-13-152637-5

Production supervision by Linda Mihatov

Manufacturing buyer: Gordon Osbourne
)

TO SUSIE AND MEGHAN

© 1984 by PRENTICE-HALL, INC.,
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

0 9 8 7 6 5 4 3

ISBN 0-13-152k37-5

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Prentice-Hall Canada Inc., Toronto

Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand

Common Algorithms
in Pascal

with Programs
for Reading

Prentice-Hall Software Series
Brian W. Kernighan, advisor

Preface

PURPOSE

This book is a collection of algorithms that are common to a wide variety of computer
programming applications. It gives the reader a vocabulary or repertoire of useful algor-
ithms, bringing together and identifying more algorithms of general utility than any
programming text. It is intended to be used as a reference or as a supplement to a
programming text. It smooths the transition from introductory programming to the formal
study of algorithms.]

The book also serves as a source of examples, exercises, and readings. Many exercises ask
the reader to think about the algorithms or to write variations. Each part of the book
includes one or more completely self-contained ‘‘programs for reading’’ that show practical
applications of many of the algorithms. These are followed by more exercises that offer
motivation for reading the programs.

WHO CAN USE THIS BOOK

Any person who is learning to program in Pascal will want eventually to know these common
algorithms. In particular, students in first and second programming courses should find it a
useful supplement, whether it is assigned reading or not; it contains most or all of the algor-
ithms taught in those courses.

Instructors of these or of other courses will find here a good source of blackboard examples,
reading exercises, written exercises, and test questions.

Programmers who use other languages, but who wish to learn Pascal, can see how the com-
mon algorithms are expressed in Pascal.

ORGANIZATION

The material is presented in an order common to many introductory texts so that it will
complement rather than conflict with them. (The introduction to Part I lists the first occur-
rence of each language feature.) In particular, the book relegates procedures and functions
to the latter half because many texts do so. Some very basic material is included for begin-
ning programmers. In each section I have arranged the algorithms so that the easier ones
appear first. In some sections it was also possible to show how complex algorithms may be
constructed from simpler ones.

Part II contains the only major departure from the ‘‘typical’’ ordering of material: the sec-
ond half presents simple state-transition techniques (without lookahead) for solving charac-
ter-processing problems. This subject is too useful to be omitted, but it can also be left for
later reading.

Part VIII presents some information-hiding techniques and other special topics.

The algorithms are indexed and cross-indexed.

vii

viii Preface

PROGRAMMING STYLE

The algorithms are written with ‘‘header’” comments identifying their purposes and with
step-by-step comments explaining how they work. The reader is expected to understand the
algorithms by reading them together with these comments, rather than by reading a separate
prose paragraph. Drawings illustrate the more difficult ones.

The style of layout, indention, and commenting are entirely consistent throughout the
book, so that the reader can become familiar with it. The stylistic details were carefully
selected to reflect the program structure and to make a clear distinction between the descrip-
tive material and the algorithms.

This is one of the very few books presenting programs that stand by themselves. Both the
internal and the more often external documentation are included within each example pro-
gram.

THE LANGUAGE USED

All the programs were compiled and executed by the OS version of the Waterloo Pascal inter-
preter running under MVS on an IBM 3081 at the Triangle Universities Computation Cen-
ter, Research Triangle Park, North Carolina.

Every attempt was made to present only standard Pascal constructs as specified by the
International Standards Organization Draft Proposal 7185, which supersedes the original
Pascal User Manual and Report by Jensen and Wirth (see the Bibliography), although the two
are quite similar. In particular, all the examples of input and output assume a batch environ-
ment. None of the algorithms rely upon the nonstandard aspects of the Waterloo
implementation.

ACKNOWLEDGEMENTS

I would like to thank the many reviewers who improved the manuscript. I especially appreci-
ate Lionel Deimel s comments and enthusiasm.

Don Martin, our department head, supported the project from its inception and provided
the means for testing the book in our classrooms at North Carolina State University,
Raleigh.

Many of the prograrns for reading were prepared by John Potok. He also provided answers
to the exercises.

The text was phototypeset on a Compugraphic EditWriter 7700 at the Printing and Dupli-
cating Department of the University of North Carolina, Chapel Hill. The copy was prepared
with the SCRIPT text formatting program, a product of the University of Waterloo,
Ontario. The SCRIPT to Compugraphic translation was arranged by the Computation Cen-
ter of the University of North Carolina, Chapel Hill. The prose is set in Baskerville, the code
in OCR-B. .

David V.Moffat

Contents

Preface vii

Part I: General Algorithms 1

Introduction and Overview 1

Simple Comparisons and Exchanges 3
Basic Input and Output 6

Basic Operations on Data 8.
Programs for Reading 12

Program Exercises 19

Part II: Character-Processing Algorithms 21

Introduction 21

Basic Input and Output 22

Tests and Translations 24

Strategies: Sentinels versus Transitions 26

Character Classes 30
Programs for Reading 33
Program Exercises 43

Part III: Array Algorithms 45

Introduction 45
Input and Output 47
Basic Calculations 50
Searches 51

Sorts 57

Other Operations on Lists 63
Arrays Used as Functions 67
Arrays Used as Other Structures 69
Program for Reading 70

Program Exercises 76

Part IV: Matrix Algorithms 77

Introduction 77
Input and Output 79
Basic Calculations 82

Other Operations on Tables 83
Other Kinds and Uses of Tables 86
Program for Reading 90

Program Exercises 101

vi Contents

Part V: String Algorithms 103
Introduction 103
Input and Output 105
Searches and Comparisons 107
Editing 111
Input Data Checking 116
Text Formatting 118
Program for Reading 119
Program Exercises 131

Part VI: File Algorithms 133
Introduction 133
Basic Operations 136
Merges and Updates 142
Sorting 146
Other Operations on Files 149
Programs for Reading 153
Program Exercises 160

Part VII: Pointer Algorithms 161
Introduction 161
Stacks 163
Queues 166
Linked Lists in General 169
Binary Trees 177
Program for Reading 182
Program Exercises 191

Part VIII: Special Topics 193
Introduction 193
Information Hiding 194
Formatted Input 197
Exact-Precision Fractions 198
Random Number Sequences 201

Answers to Exercises 205
Bibliography 225

Index 229

Part I: General Algorithms

INTRODUCTION AND OVERVIEW

An algorithm is a finite sequence of well-defined actions whose result is to accomplish a given
task. If they are to be put to any use, whether as subjects of study or as instructions to a
computer, algorithms must be expressed in a spoken or written language or notation. When-
ever an algorithm is written in a programming language, it bears the imprint of that lan-
guage. A page-long algorithm in one language, for example, may be a single statement in
another—a ‘‘sequence’’ of one action! Nonetheless, an algorithm has some kind of expres-
sion in any language.

A large set of algorithms are common to a broad range of computer applications and are
expressed in a variety of programming languages. Taken together, they form a kind of lan-
guage themselves, in which the solutions to many programming problems can be described.
This ‘‘language’’ of common algorithms, not the knowledge of a particular programming lan-
guage, is the key to success in programming. This book expresses that language of algor-
ithms in Pascal.

Very few problems that can be solved with computers are solved merely by stringing
together some algorithms; there is more to programming than that. The solution to a prob-
lem is described in terms of some central algorithms. These are usually supported by other
algorithms, such as to input data and to display results. Many problem solutions also refer
to an environment or situation that must be simulated within the program. Finally, the
objects and terminology of the problem area and its solution must be defined as constants,
types, and variables in the program.

Yet algorithms are still the basic building blocks of programs, and familiarity with the com-
mon algorithms is basic to the act and art of programming.

You can use this book in two ways: as a reference or as an introduction to algorithms in
conjunction with an introductory text. In either case, it is best to read all of Part I to become
familiar with the method of presentation and with some basic terms and algorithms that are
echoed throughout the book.

If you use the book as a supplement to a text, then try to read it in the same order as the
material in your text. However, if you chance upon some unfamiliar material here, you can
be sure that you will eventually want to learn it anyway; there are no ‘‘cute’’ or ‘‘one-shot”
illustrative examples, nor any esoteric applications. All the algorithms are used again and
again in general programming. You can also read each part in its entirety to find out ‘“all
about’’ the algorithms that apply to the given data structure.

If you use the book as a reference, you will find that each algorithm is indexed, cross-in-
dexed, and identified with comments. Each part is as self-contained as possible, given the
fact that many algorithms have variants for several data structures. It is important to recog-
nize that, although some algorithms can be copied unchanged into any program, many
algorithms serve only as outlines or skeletons that must be filled in with details specific to
each program.

2 Part I: General Algorithms

The outline that follows shows where each of the various Pascal language features is first
introduced in this book. It can be used to determine the background information you may
want to know to read each part:

Part I: VAR, CONST, INTEGER, REAL, IF-THEN-ELSE, FOR, WHILE,
BEGIN-END, READ, READLN, WRITE, WRITELN, EOF, EOLN, assignment,
and simple expressions. The programs for reading also introduce PAGE, CHAR, and
CASE in simple contexts.

Part II: Set constants using character subranges, IN, ORD, CHR, BOOLEAN f{lags,
TRUE, FALSE, TYPE for defining enumerated types, nested CASE statements, and
one procedure. The example programs use REPEAT-UNTIL.

Part III: General TYPE definitions, integer subranges, ARRAY, boolean expressions,
FOR with DOWNTO, and one RECORD in the last section.

Part IV: Matrices, nested FOR loops, RECORD, ARRAY of RECORD, WITH, and
one PROCEDURE. The program for reading contains several PROCEDURE:s.

Part V: Strings, a PROCEDURE or a FUNCTION for each algorithm, and the
INPUT buffer variable in a simple application.

Part VI: FILE, file buffer variables, GET, PUT, REWRITE, RESET, and the full syn-
tax for READ and WRITE.

Part VII: Pointers, NEW and DISPOSE, and NIL.
Finally, try to do the exercises—or at least think about them—as you encounter them; they

are designed and strategically placed to reinforce your understanding of the algorithms.
Answers and hints for exercises that are marked with ““{’’ are given in the back of the book.

Stmple Comparisons and Exchanges 3

SIMPLE COMPARISONS AND EXCHANGES

As you will see throughout this book, comparisons and exchanges of values are important
classes of algorithms. In this section we start with the simplest ones.
Assume these declarations:

VAR
A : INTEGER; (x A, B, and C are any arbitrary *)
B : INTEGER; (* integers. *)
C : INTEGER;
SMALL : INTEGER; (* SMALL and HOLD will be *)
HOLD : INTEGER; (* explained in the discussion.*)

and assume that A, B, and C have been assigned values.
The first algorithm selects one of two values:

(* Save the smaller of two values in SMALL: *)
IF A < B THEN

SMALL := A
ELSE

SMALL := B

Often, given one small value, we will want to find a still smaller value:

(* Save the value of A if it is smaller than SMALL: *)
IF A < SMALL THEN
SMALL := A

So we could then have:

(* Assign to SMALL the smallest of three values: *)
IF A < B THEN
SMALL := A
ELSE
SMALL := B;
IF C < SMALL THEN
SMALL := C

Ex. 1: Tell why this does not make sense:

IF A = SMALL THEN
SMALL := A

and why this might make sense:

IF A <= SMALL THEN
SMALL := A

4 Part I: General Algorithms

There is a simple-looking algorithm called a shift that has important applications. Assume
that A and B have been the variables of interest and that C contains the ‘‘next’’ value of
interest:

(* Shift the value of € into the A B pair, losing A: *)
A := B;
B := C

The shift would be diagrammed this way:

A <¢—— B - C
Its applications will be seen shortly.
All the preceding algorithms substitute a new value for the current value of a variable. The
old value is lost. We often must instead exchange the values of two variables:

(* Exchange (or '"swap'") the values of A and B: *)
HOLD := A;

where HOLD is any variable set aside for this purpose.

tEx. 2: How many extra variables like HOLD would you need to exchange the values of three variables?

Try it this way:
(A B c :

Exchanges are always done with some purpose in mind. For example:

(* Arrange the values of A and B so that A is smaller: *)
IF A > B THEN
BEGIN (* exchange *)

HOLD := A;
A = B;
B := HOLD

END (* exchange *)

Ex. 3: Does this algorithm guarantee that A is less than B?

Simple Comparisons and Exchanges

This rearrangement of values is called ordering or sorting. We can order or sort any number of

values:

(x Order the values of A,
(* to largest (in C):

IF B < A THE

BEGIN (* swap A & B

HOLD := A
A := Bj;
‘B := HOLD

END; (* swap *)

(* Now A <=
IF C < A THE

.
’

B.
N

BEGIN (* swap A & C

HOLD := A
A := C;
C := HOLD

END; (* swap *)

(* Now A <=
IF C < B THE

.
’

B and
N

A <=

BEGIN (* swap B & C

HOLD := B;

B := C;

C := HOLD

END (* swap *)

(* Now A <=

Ex. 4. In general, how many exchanges must you write to order the values of n variables?

B and

B <=

*)

c,

B, and C from smallest (in A)

as desired.

*)

*)

*)

*)

*)

As you can see, this technique for ordering values would be very cumbersome for large num-
bers of values. That problem will be solved later. For now, review these algorithms to see
how to find the larger of two values and how to order several values from largest to smallest.

6 Part I: General Algorithms

BASIC INPUT AND OUTPUT

Most interesting programs use loops to manipulate large amounts of data. This section
shows three kinds of loops for getting (and displaying) a quantity of data.
Assume that we have a constant and variables like these:

CONST
SENTINEL = ...; (* (To be explained.) *)
VAR
DATUM : INTEGER; (* One input value. *)
N : INTEGER; (* Number of values to input. *)
I : INTEGER; (* Loop index. *)

Assume that the input is a sequence of integers, one integer per line. If the lines of input
could be counted beforehand, we could put that number as an extra first input number, using
it to get the rest:

(* Find out how much input to get: *)
READC N);
(* Get and echo the N data values: *)

FOR I:=1 TO N DO
BEGIN (* each value *)
READLN(C DATUM);
WRITELNC(DATUM)
END (* each value *)

TEx. 5: What is a major disadvantage of this method?

Rather than count the data, we could put an extra, but unusual, value as the /ast data item
(called a sentinel value), then input everything up to that value. Assume that SENTINEL
was set to that special value:

(x Get and echo data up to the sentinel (SENTINEL) value: *)
READLNC DATUM);
WHILE DATUM <> SENTINEL DO

BEGIN (* each value *)

WRITELNC DATUM);

READLNC DATUM)

END (* each value *)

Ex. 6: What of all integer values are possible input values (that is, none is unusual enough to be used as
a sentinel); can you use “END’’ or ““***’’ as a sentinel?

TEx. 7: You can use an unusual sequence of two values as a sentinel even if any single value is valid
data. Write the algorithm for this, remembering that the first value of the pair is part of the sentinel if
and only if the proper second value follows it—otherwise it is data. (Hint: include a “‘shift’’ algor-
ithm.)

Basic Input and Output 7

The third way to get an input sequence is the easiest and most commonly used:

(* Get and echo data values until end-of-file: *)
WHILE NOT EOFC(INPUT) DO

BEGIN (* each value *)

READLNC DATUM);

WRITELNC DATUM)

END (* each value *)

Ex. 8: In which of the three input loop control techniques can READ be substituted for READLN?
1Ex. 9: Rewrite the EOF loop assuming that any number of values can appear on one line.

There are many ways to vary and to combine these three input techniques. For example,
the input sequence might be divided into smaller groups by one sentinel value (say, 0), with
the whole sequence ended by another (maybe -1), like this:

2.1 0
0
1 4 2 0

- N

Let GROUPEND be 0, and let SENTINEL be -1. (Actual data will be any positive integ-
ers.) The data might be processed this way:

(* Get and echo groups of data up to the final sentinel: *)
READ(DATUM);
WHILE DATUM <> SENTINEL DO

BEGIN (* each group *)

(* Get and echo group values until the end of group: *)
WHILE DATUM <> GROUPEND DO
BEGIN (* each value %)
WRITE(DATUM);
READ(DATUM)
END; (* each value =*)
WRITELN;
READ(DATUM)
END (* each group *)

Ex. 10: Does this algorithm handle empty groups or a lack of groups properly?

fEx. 11: Rewrite the algorithm to use the EOF function instead of using the -1 sentinel value. (Take
care about the ends of lines.)

BASIC OPERATIONS ON DATA

Part 1. General Algorithms

In this section we explore some of the general kinds of operations that are commonly per-

formed on sequences of input data.

Assume that we have these declarations:

VAR
DATUM : INTEGER; (* One input value. *)
N : INTEGER; (* Number of input values. *)
SUM : INTEGER; (* Sum of the input values. *)
SMALL : INTEGER; (¥ Smallest input value. *)

Assume also that the data appear one value per line. EOF loops will be used throughout this

section to get the data.

The list of values would usually be echoed in a single column. Sometimes, however, the sin-
gle input sequence is divided between two output columns, using some criterion to decide the
column in which each value will appear. Here negative versus nonnegative will be used as

an example criterion to select a column:
(x Echo

(* Print column headings:
WRITELN('Negative':10,

(* Get and echo data until end-of-file,

(* negative and nonnegative values

WHILE NOT EOF(CINPUT) DO
BEGIN (* each value =*)
READLNC(DATUM);

(* Select appropriate output column,

IF DATUM < 0 THEN
WRITELNC DATUM:10)
ELSE
WRITELNC ' ':10,
END (* each value *)

TEx. 12: Write an algorithm to select one of three columns, given an appropriate selection criterion.

DATUM:15)

input data to selected output columns:

'0 or Positive':15);

*)

*)

putting the *)
into separate columns: =*)
then echo: *)

