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FOREWORD

Metallurgists have long had an interest in the effects of impurities
and imperfections on the properties of metals and alloys. Variations in
properties between similar lots of metals have frequently been attrib-
uted to small differences in chemistry and in many instances such differ-
ences have been found. Not infrequently, however, the differences could
not be accounted for by chemistry, at least by regular chemical analysis
procedures. Recently techniques have been developed that enable the
determination of exceedingly small amounts of impurities and these
have confirmed that very pronounced effects can result from impurities
present in amounts of parts per million. An important factor in bring-
ing this about has been the development of semiconductor devices, such
as the transistor, which depend for their operation upon controlled im-
purities present in exceedingly small quantities. Also well recognized
but not as definitely confirmed quantitatively because of experimental

difficulties are the effects of fine structural imperfections. The advances

being made in this field are very rapid and significant, and it was there-
fore selected as the topic for the 1954 American Society for Metals
Seminar.

The Committee responsible for atranging the program consisted
of D. Turnbull, Chairman, P. A. Beck, H. Brooks, B. Chalmers, R.L.
Cunningham, E. Jette, L. K. Jetter, E. S. Machlin, R. Maddin, O. T.
Marzke, A. S. Nowick and F. Seitz. The members offered many help-
ful comments and suggestions on topics, speakers, and general arrange-
ments.

Background information on the three major types of imperfections
—point (lattice vacancies and interstitials), line (dislocations), and sur-
face (grain and sub-grain boundaries)—is first presented. This is fol-
lowed by discussions of the effects of both impurities and imperfections
on metallurgical reactions (grain growth, diffusion, and transforma-
tion) and on properties (mechanical, electrical, and chemical). Finally,
papers on semiconductors, ionic crystals, and radiation effects are given
because of the very significant contributions to this general field by
physicists working on these materials.

O. T. MARZKE
Office of Naval Research Seminar Coordinator
Washington, D.C.

February 25, 1955
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LATTICE VACANCIES AND INTERSTITIALS IN METALS

Bv Harvey Brooks

1. INTRODUCTION

T IS convenient to classify imperfections in crystals according to
I their dimensionality : point or atomic imperfections, line imperfec-
tions, and surface imperfections.

Surface imperfections include grain boundaries, mosaic bound-
aries, twin boundaries, boundaries between solid phases, and free sur-
faces. Line imperfections are called dislocations. Both surface and line
imperfections are characterized by the fact that they do not, in general,
exist in thermal equilibrium below the melting point of a solid. They are
usually metastable structures which result from incidents of growth,
mechanical deformation, or thermal history (1).?

Atomic imperfections are characterized by the fact that they can
exist in thermodynamic equilibrium in a crystal at finite temperature,
They consist of localized groups of misplaced or missing atoms. This
classification includes lattice vacancies, interstitials, substitutional im-
purities, and various associations of these such as clusters of vacancies
and interstitials in the form of subcritical nuclei or “embryos.” A lattice
vacancy, for example, is an atom site, normally occupied in the perfect
crystal, from which an atom is missing. Often the term vacancy is used
to denote a so-called Schottky defect, which is the imperfection formed
when an atom is removed from a normal lattice site and replaced in an
average position on thé“surface of the crystal. An average position is a
position such that the energy gained when an atom joins the crystal at
this point is exactly equal to the heat of sublimation. When the crystal
is an alloy or solid solution there will be many different types of
Schottky defect, corresponding to the different possible environments
of the vacant lattice site.

. An interstitial is an atom occupying a definite position in the lat-

tice which is not normally occupied in the perfect crystal. The inter-
stitial may be either a normal atom of the crystal or a foreign atom. An
interstitial is a defect formed by removing an atom from an average
position on the surface and placing it in an interstitial site; a Frenkel
defect, on the other hand, is formed by removing an atom from a normal
lattice site to form a vacancy and placing it in an interstitial position
remote from the vacancy. Vacancies and interstitials can move through
the crystal. A vacancy moves through having a neighboring atom jump
into the empty site. The motion of an interstitial can be more compli-
cated. In interstitial solid solutions, for example, the interstitial solute

! The figures appearing in parentheses pertain to the references appended to thig paper.

The author, Harvey Brooks is Gordon McKay professor of applied physics,
Harvard University, Cambridge, Mass.
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2 IMPURITIES AND IMPERFECTIONS

atom jumps directly from one interstitial position to a neighboring one.
On the other hand, in self-diffusion by an “interstitialcy” (2) mecha-

* Qe )
Vi
F‘,l—m ." f

gion
Mechanilm (veftied ‘ar-
row).

nism, an atom in an interstitial position replaces an atom in a normal
position and pushes it into an adjacent interstitial site. Both situations
are illustrated for a face-centered cubic structure in Fig. 1. Tt is seen
that interstitial solute diffusion requires much closer crowding of atoms
than the interstitialcy self-diffusion mechanism, and thus it is that inter-
stitial solute diffusion can only occur with very small solute atoms.

This simple classification of imperfections is complicated by the
possibility of various associations of imperfections. For example, va-
cancies can associate in pairs or in complexes containing several vacan-
cies. Vacancies and interstitials, on the other hand, usually cannot as-
sociate with each other because they will mutually annihilate, Vacancies
or interstitials can become associated with edge dislocations, or with
the edge parts of complex dislocations. When they do so they form
jogs in the dislocation line; jogs due to vacancies and interstitials pro-
ject in opposite directions, and can migrate along the dislocation line
until they meet and annihilate one another. Vacancies can also form

“atmospheres” around dislocations, especially at high temperature,

Vacancies may also associate preferentially with substitutional impurity
atoms, especially if these differ apprecxably in size from the surround-
ing lattice. Such associated vacancies may enhance the diffusion rate of
certain 1mpur1t1es

Since grain boundaries and mesaic boundaries are thought to be
composed of dislocations, vacancies and interstitials can also associate
with such boundaries, and also form atmospheres near them at high
temperature '

2. ForMaL THERMODYNAMIC THEORY OF ATOMIC IMPERFECTIONS

Let fv be the energy necessary to form a single isolated vacancy in
a pure metal, and Ny he the number of such vacancies present, while N
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is the total number of atoms in the system. A careful analysis shows
that f, is actually the increase in Gibbs free energy of the crystal as a .
whole when a Schottky defect is formed at a particular lattice sne and
a particular surface site.

The total number of lattice sites available to vacancies is N + Ns.
The free energy of the system, taking into account the various possible
positions of the vacancies, is then given by:

F = Nufy —KTin ’L‘:‘é‘”

Equation 2.1
= Nofy — kT (Nan +N,)

using Stirling’s approximation for the factorials, In order to find the
most probable number of vacancies we minimize Equation 2.1 with
respect to Ny, keeping N constant. The result is:
-II:Iﬁ =e f./kT T Equation 2.2

A similar analysis applies to interstitials. The combination of an inter-
stitial and a vacancy, located at different lattice sites is a Frenkel defect,
and its free energy of formation may be denoted by f;, and the number
of such defects by Ny. In this case the free energy of the system is given
by:

F=N—&T [Nin §0 + Nidn - + 2N: | Equation 2.3

where q is the number of interstitial sites per normal lattice site. Of the
two terms in the entropy the first arises from the different possible loca-
tions of the interstitial and the second from the different possible loca-
tions of the vacancy in the lattice. Minimizing with respect to N, we
have:

£
% =g 2T Equation 2.4
Et i
=q¥% 2kT

where f; is the free energy of formation of an interstitial alone.

A more interesting case is that which obtains when vacancies and
interstitials can occur independently. We now denote by f; the free
energy necessary to form an interstitial by taking an atom from the
surface and putting it at an interstitial position in the interior, while f,
has the same meaning as previously. The result is, that since N, and Ny
are independent we have the independent relations:

£
Ny _ kT

=qe
N Equation 2.5
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fv
N_ . KT
N =e
A similar analysis may be applied to simple complexes of atomic
defects In each case the relation for the number of such complexes is:

_f

N kT Equation 2.6

=
where N, is the number of complexes of size n, f, the corresponding
free energy, and p, the number of dlstmgulshable orientations which
the complex can assume. For example, for a pair p = z/2, where z is
the co-ordination number,

Also of interest is the relative number of complexes under the
condition that the total number of vacancies is fixed, but not necessarily
at the equilibrium value. This is the condition that might obtain, for
example, in a crystal quenched from a high temperature. Without going
through the detailed derivation it may be noted that the fractional num-
ber of n’th order complexes is given by :

gn =Da {Nv exp < fl. fn/ﬂ >} Equation 2.7

where the free energy in the exponential is the binding energy per unit
imperfection of the n’th order complex. Equation 2.7 is valid only if the
quantity in brackets is small compared with unity. This equation shows
that, as we should expect, the number of complexes decreases very
rapidly with the order. Even binary associations of defects usually are
of little importance unless a high degree of supersaturation exists. For
the case of a binary complex Equation 2.7 may be put in the form:
g—: = %*g—' exp (Zf;(,r b Equation 2.8

where N3/Nj, is the ratio of pairs to single vacancies. If we adopt the
crude model that the energy of a vacancy complex is approximately
proportional to its surface area, and we represent each vacancy by a
cube, then we find :

2f1 - fa = &'ﬁ
Now, the temperature at which motion of vacancies is appreciable
(taken as about 10* jumps per sec.) is determined roughly by the
condition: i,

eﬁ —10 Equation 2.10

From this it follows that a face-centered cubic crystal can have appre-
ciable binary complexes compared with single vacancies at room tem-
perature if the concentration of vacancies is of the order of 104, which
is of the order that exists just below the melting point in common
metals.
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It has sometimes been suggested (22) that pairs of vacancies may
make important contributions to diffusion because they are much more
mobile than single vacancies. (27) The above discussion would indi-
cate that this can be true only under conditions of considerable super-
saturation, although it is possible that the binding energy of a pair may
be substantially larger than given by the crude estimate above.

The above general theory of complexes applies almost unchanged
to aggregates of interstitials, and is especially applicable when the inter-
stitials constitute a second species of atom, for in this case the number
is fixed by compos:tlon There is some mdlcatlon of the existerice of
binary associations in interstitial solid solutions.

3. ESTIMATES OF FORMATION ENERGY IN TERMS OF
Macroscoric CoNCEPTS

Even though there is no rigorous justification for using such
macroscopic concepts as surface energy and elastic constants.on an
atomic scale, it is still instructive to attempt to apply such concepts to
the calculation of the free energy of formation of vacancies and inter-
stitials. The more rigorous quantum mechanical calculations which can
be made involve such drastic approximations that there is some ques-
tion as to whether they are any more reliable than the cruder. estimates.
In any event, where the two methods agree, one may have additional
confidence in both results.

The simiplest approxxmatlon would be to regard the atoms of the
metal as bound by pairwise interactions between nearest neighbors. In
this case the cohesive energy, or heat of sublimation, is represented by :

Een=%zw

where z is the number of nearest neighbors, and w the pair interaction
energy. Then a vacancy is formed by breaking z bonds and restoring,
on the average, z/2 honds when the missing atom is returned to the
surface. Thus, in this picture, the energy of formation of a vacancy
should be equal to the sublimation energy. That this is an overestimate
for metals is clear from the fact that the same concept results in an
overestimate of the.free surface energy of a metal.

For example, the palr interaction would imply a vacancy formation
energy of about 3.6 ev. in copper, whereas the actual value is probably
less than 1.2 ev.(2). Similarly the bond picture would suggest that the
surface energy per atom of a close packed surface in Cu would be about
one half the heat of sublimation, and would be an even larger fraction
for other surfaces, whereas actually the surface energy is less than one
third the heat of sublimation. If the energy of a vacancy were reduced
in the same ratio, its formation energy would be about 2.4 ev. In fact,
this reduction of the surface energy is a result of the nature of the
‘metallic bond. In terms of bond language, a large part of metallic bind-
ing arises from “resonance’” among the various possible bonding direc-
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tions, and the result is that when a few bonds are broken some of the .
bonding strength is transferred to the remaining bonds. In terms of the
energy band picture, the eléctrons in a metal are highly mobile and
will adjust their distribution to shield out any disturbance in the lattice
in such a way as to reduce its energy. Qualitatively this effect should
be the same whethier the defect is a free surface or a vacancy, although
empirically the correction factor appears to be somewhat larger fora
vacancy.

A more precise treatment would be the followmg The formation
of a vacancy is considered as equivalent to creating new surface equal
to the area of one unit cell, or approximately the spherical surface cor-
responding to the atomic volume. In order to preserve the volume
energy the missing atom must be regarded as spread uniformly over
the outer surface, and it-is easily shown that the resultant increase in
external surface area becomes negligible as the volume gets large. Thus
the energy becomes

fo = dwr’y Equation 3.2

where y is the specific surface free energy. However, the surface tension
of the hole will tend to contract its size by distorting the rest of the
crystal elastically. Let us suppose that this elastic distortion results in
a displacement er, of the surface of the hole. Then, using ordinary
elasticity theory, which involves the assumption that ¢ is « 1, we find
for the total elastic energy associated with the contraction of the hole:

fer = 8xGr.’¢ Equation 3.3

where G is the rigidity modulus of the surrounding crystal. G may be
taken as the reciprocal mean of the two principal cubic shearing elastic
constants ¥ (cn1 — c¢12) and c4. The precise relationship used is de-
rived in Appendix A, and is given by :

106 04
G = C« '}(Cn - Cn)

Taking into account also the reduction in surface energy due tethe
contraction of the hole we have for the total energy : .

Equation 3.3’

fy=ae¢ + be® )
a = 8rry Equation 3.4
b = 8»Gr.* + 4’!_';1 )
"The minimum energy occurs for e = —a,/2b, and its value is given by:
1
fe=dmrdy <, 5, 7 Equation 3.5

In choosing the value of y in Equation (3.5) we take as the surface
area of a close-packed face not the plane surface area but rather an
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effective area for the atoms exposed on such a surface. The plane area
associated with each surface atom is:

V3at
3

where a, is the cube edge. Each surface atom has one quarter of its
neighbors missing so that in effect we may take its surface area as one
quarter that of an atomic polyhedron or

3 a*
4\'2

.The effective area is thus \/ =1 225 times the plane area. As an
example for copper this gwes

Yorr = 14;2% = 1165 ergs/an

‘whence ' At B ysee ~ 202 ev.
For Cu r. = 1414 x 10°,G =394 x 10" and
’ e AL
‘ 3G, = 0.1045 .
" and thus ) “fr=183ev. for copper.

- Analogous calculations may be made for the assumption that the
measured surface energy is.that of a 100 face and a 110 face respec-
tively. In this way we find: .

fo =1.59ev. for 100 assumption . ’
fr = 180 ev. for 110 assumption

If we consider that the surface energy, measured at high tem-
perature, represents ar average of many possible onentatxons, we.may

estimate a lower limit for f; at about 1.45 ev.

Results of similar calculations for other elements are shown in
Table I. Actual measurements of surface energy are available only for
copper, silver, and gold. In the other cages the surface energy was taken
as one sixth the heat of sublimation, per surface atom. Values of G
were ‘computed from:Equation 3.3’ and are also shown in Table I, as
are the ratios y/Gr,. Tt is probable that the method of calculation gives
an upper limit for f, because, as discussed in the example of copper,
the measuréd free suyrface energy is probably an average for several
crystallographic orientations rather than for a close-packed face as
assumed in the computatxons. '

The only more rigorous calculatton available is that for copper by
Huntmgton (3), who  gives: :

E,=18ev.

. It is shown in Appendix B that Huntington's calcination should be
modified and the true predicted value of E, should lie between 1.0 and
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Tabfe 1
Calculation of formation energy of vacancy from surface energy and elastic cattraction.
. fet fv it

Element « (plane) ao G Grs (uncorrected) (corrected)

Cu 1430 ergs/em® 3.615A° 3.94 X /101-'; 0.210 2.02 ev. 1.83 ev.

8/ ct
1180 4.086 2.7 0.218 2.12 1.91

Au 1 4.078 2.44 0.326 2,78 2.38

Al (900) 4.049 2.60 0.179 1.46

Pb (520) 950 642 0.342 1.378 1.17

Ni (1830) 3,524 7.17 0.151 2.44 2.27

Na ttt 220 4.291 0.152 0.582 0.715 0.554 .

a-Fe (1880; 2.866 7.4 0.153 2.73 2.54

w (3460 3.165 15.1 0.124 6.10 $.73

+ Computed assuming that vy (plane) is for close-packed face, not corrected for contraction.

41 Corrected for contraction. i .

+1t Body-centered cubic resulte computed sssuming that surface energy vy is that for a
close-packed face, (110).

1.2 ev.(8). These results are not strictly comparable, since Hunting-
ton’s calculation give the energy of formation for absolute zero, whereas
the calculation outlined above gives something more nearly equal to a
free energy at room temperature. The two should not differ by more
than about 0.05 ev. Tt appears that the surface energy calculation over-
estimates the formation energy of a vacancy as compared with experi-
mental values.

We may also compute the energy of formation of an interstitial
by similar arguments. An upper limit to this should be given by a cal-
culation of the strain energy in the lattice produced by the interstitial.
For interstitials of the same species, the strain energies involved are so
large, that the problem cannot be considered even approximately in
terms of linear elasticity theory. However, if we assume that the non-
linearities in the stress strain relationship are of similar functional form
for different materials of the same crystal structures we arrive, by a
dimensional argument, at an expression for the strain energy of the
form: ' .

for = 8aGrf (r/r.) Equation 3.6

We may evaluate the function f(ri/r,) roughly as follows. The
total force acting across a spherical surface of radius r is given approxi-
mately by:

Fr = 16xGr*In(r/1e)
where r, is the initial radius with the crystal in equilibrium. The work
done in expanding the cavity from r, to r; is then given by :

N
/ Fudr = 8+Gry® [} In(r/re) —2(1 — ro'/n‘)] Equation 3.7
To

Iq ?he case of an interstitial ro may be taken as the radius of the inter-
stitial site while ry is the radius of a normal site. G is now given by
Eguatxon (A.6) and is 5.4 X 10" dynes/cm® for copper. For an inter-
stitial site in the face-centered cubic structure we have
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. r/r, = 2414
Hence f(r/re) =0.381
and fi=92ev.

A quantum mechanical calculation (2) yields a value of 9.5 ev. It may
be more appropriate to use the value of G given by Equation A.5 for a
(100) direction, since the neighbors of an interstitial lie entirely in
such directions. The interstitial formation energy is, then, reduced to
4 ev., which agrees better with a recent revised quantum mechanical
calculatlon by Huntington (26).

For the body-centered structure the largest interstitial position
has the property:

l'l/ To = 3.4
£(ry/r,) = 0.608

where the cage is formed by 3 atoms located in (210) directions from
the interstitial. The appropriate shear modulus is the same as for the
FCC structure. However, there are fewer neighbors than in the FCC
case, so that the effective value of f may be substantially smaller, and
macroscopic considerations even less applicable.

The foregoing discussion makes it plausible that interstitials do
not play an important part in diffusion in FCC metals. The same con-
clusion seems valid for BCC metals, althotigh Paneth (28) has dis-
cussed a more rigorous atomic calculation which indicates the possibil-
ity of a modified interstitialcy mechanism of diffusion in sodium. Such
a mechanism would, however, have a negative volume of activation,
since the crystal would tend to be more dense in the activated state. A
volume of activation may be deduced from the pressure coefficient of
the activation energy for self-diffusion according to the thermodynamxc
relation:

(oH/%p)r =—V

The results of Nachtrieb et al. (13) yield a positive activation volume
which varies from 0.5 the molar volume at atmospheric pressure to
about 0.4 the molar volume at 8000 atmospheres. This is strongly sug-
gestive of a vacancy mechanism. The presence of a Kirkendall effect
in beta brass, another BCC structure, does not rule out the possibility
of an interstitialcy mechanism in this substance.

The energy necessary to move a vacancy through the saddle-pomt
configuration may also be estimated from elasticity theory. In the FCC
structure let us assume with Buffington and Cohen (10) that the atom
jumps from (1/2,0, 1/2) to (0, 0, 1) and that the saddle configuration
occurs for the atom at 1/2(1—x), 0, 1/2(14-x), where x is a fraction
to be determined by maximizing the energy. The nearest atoms are at
positions 1/2,1/2,1;0,1/2,1/2;0, —1/2,1/2; 1/2, —1/2, 1. The
distance between the saddle-pomt atom and any of these neighbors in
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tﬁe normal lattice is represented by the vector 1/2 x, 1/2, 1/2(1—x).

The magnitude of this vector is a minimum when x=1/2 and’ has the
value (\/3/2\/2). Of this interatomic spacing the distance (1/2 \/'2_)'
may be considered as occupied by the neighboring atom, so that we
must assign a distance (\/3 —1)/2\/2 to the atom at the saddle-point.
Furthermore all the atoms are displaced in 211 directions, so that we

should use the shear modulus appropriate to that direction from (A.S).
We thus have for Cu:

rn/ro=1/(¥ 3—1) = 1.366
f(r/re) =0.0725 Equation 3.7%
saddle point energy = 2 ev.

This is probably a large overestimate since the cage for the saddle-pomt
position is defined only by 4 atoms. The result of this calculation for all

Table II -
Calculation of activation energy of self-diffasion for cublc
metals using macroscopic concepts.

Total Experimental
Element G Saddle-Point  Activation Activation ~ ___Theory
Energy Energy Energy Experiment
Cu 6.2 X 10un 2.01 ev. 3.84 ev. 2,07 ev. 1.85
© dyneg/em?
3.72 1.74 3.65 2.0 1.82
Au 3.53 1.64 4.02 2. 22 1.81
2.73 1,25 2.71 143 1.89
Pb 1.17 0.98 2.15 1.17 .83
Ni 10.01 3.04 5.31
Na 0.593 12 0.68 0.46 1.47
a-Fe 11.6 72 3.26 2.60 1.28
T 15.14 1.28 6.98 6.10 112

the FCC metals is shown in Table I1. This table also gives for reference
the value of G from Equation A.5, the total activation energy for self-
diffusion from combining thh Table I, and the expenmental values -
of this quantity.

For the case of the BCC structure we find ;

ri/ro =113
f(r/rs) = 0.0140

and the result is that the saddle-point energy is much lower than in the
ECC case. Values of the saddle-point energy and of the total activation
energy for some BCC metals are also shown in Table 11.

The principal conclusion from Table II is that the macroscopic
theory substantially overestimates the activation energy for seli-
diffusion. For FCC metals the elastic energy at the saddle—pomt seems
to vary betweeen 40 and 50% of the total energy. The theory is prob-
ably much more accurate in the prediction of the relative magnitude of
different contributions to the energy, and no rcliance should be placed
on absolute magnitudes. The low value for the saddle-point energy in
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BCC metals, however, appears to be an inescapable conclusion from
the geometry. For the FCC metals the ratio of theoretical to experi-
mental values of activation energy seems to be surprisingly constant,
but this is not true in the BCC case. '

Nachtrieb and co-workers (13) have pointed out a remarkable
empirical correlation between the latent heat of fusion and the activa-
tion energy for self-diffusion, It is simply that

H=165Lx
where H is the activation energy and Ly, is the latent heat per mole or
per atom. Comparison between calculated and experiinental values is

indicated in Table I1I1. The discrepancy for Pb and Al may be signifi-
cant, since a corresponding discrepancy does not appear in Table II.

Table IH

Correlation between scif=diffusion activation energy and latent heat of melting.
Activation energies are given in ev. per atom.

Element 16.5 Lm Experimental

Cu 2.21 ev. 2.07 ev.
Ag 1.95 2.00
Au 2.18 2,22

Al 1.82 1.43

Pb 0.89 1.17

Ni 2.85

Na 0.46 0.46
a-Fe 2.89 2.60

W 8.00 6.10
Co 2.64 2.69

The same authors have also shown that the change with pressure of the
activation energy in Na can be closely correlated with the change in
melting properties. No theoretical justification for these relations has
been found.

The above calculations refer to the free energy of formation of a
vacancy and to the free energy associated with the saddle-point con-
figuration. At finite temperatures the free energy cons:sts of two parts,
and may be written as:

fv = hv - TSV . Equation 38
Hence the equilibrium concentration of vacancies is given by ; '
cr = exp(sv/k) exp(hy/kT) Equation 3.9

In general we should expect s, to be positive for vacancies, since the
neighbors will be less constrained and can tend to oscillate towards the
vacant site at somewhat less than their normal frequency in the crystal.
1If vp is the normal crystal frequency, usually taken as the Debye fre-
quency, and »y is the frequency of a neighbor in the direction of the
vacancy, then it follows that: '

Sv=z kln(vn/'vv)
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where z is the number of neighbors. A crude but pldusible assumption
is that v varies as the square root of the total bond energy. Since each
neighbor has one missing bond, this gives the relation:

eL) ?
P/ = ( ) Equation 3.11

exp(sv/k) =

This factor is about 1.7 for both face—centered and body-centered cithic
structures. Another approach to this problem is to use Equation (3.5),
bearing in mind the temperature coefficient of the elastic constant. As-
suming the surface energy contribution to be negligible, we have:

dfy 'Y/ 2Gr. 1 dG

T fv TF +/2Gr. ~/2Gr, Gar Equation 3.12

We may obtain the necessary data from Table I and from Ref. 6. For
example, for copper we obtain:

_df e i0e
IT 2.5x10

k' = Equation 3.13
exp(sv/k) = 1.33

where we have taken the observed value of f; (cf. section 5). If we take

the calculated value, the corresponding factor is raised to 2. Hence, we

may say that within the crude limits set, the two methods of computing

the entropy agree.

In the case of interstitials, it is evident that the entropy of forma-
tion should be negative, since the vibration frequencies of the neighbor-
ing atoms will certainly be increased.

It might be thought that an additional contribution to the entropy
of formation would arise from a volume coefficient of the energy of
formation combined with the effect of thermal expansion. There is
reason to believe, however, that this effect may be small for metals. If
the energy of formation were strictly proportional to the cohesive
energy, the latter has a zero volume coefficient at the equilibrium lattice
spacing by the definition of equilibrium. Thus we might expect df,/dV
to be very smalil.

Entropy of activation is also associated with the saddle-point as
emphasized by Zener (6). In the FCC metals reference to Equations
3.7 and 3.7” shows that :

Sa.5. = Hap. (1/G dG/dT + 1/V dV/dT)
=21x10*H,; = 227 x10* ev./%.
or se¢.p./k =2.63 for Cu



