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Introduction

In 1988, George Leach and members of the Florida West Coast Unix community got
the idea of having a workshop or conference on distributed systems in the area. George
contacted Peter Salus (then Executive Director of Usenix) and Gene Spafford about
the idea, and plans were made. The decision was to have an event that would stress
experiences with distributed and multiprocessor systems, rather than the theory and
algorithms that seem to predominate at so many other conferences in the area. A
formal proposal was made to the Usenix board, and they approved the workshop.
Gene got the directors of the SERC (Software Engineering Research Center) to cover
some of the expenses and clerical efforts, and to provide other assistance in publicity.

Thus, in the autumn of 1989, Usenix and the SERC cosponsored the first Experi-
ences with Distributed and Multiprocessor Systems event. That was intended to be a
workshop, but because of the quantity and quality of submissions and participation,
it became a miniconference. It was known by the acronym WEBDMS, and included
25 presented papers, some of which were later developed into a special issue of the
journal Computing Systems. The workshop was attended by over 125 people in Ft.
Lauderdale, Flordia, and was judged a great success.

We decided to see if the theme for this event could support a second event, this
time as a more formal symposium requiring somewhat more developed papers. Thus,
with Usenix and SERC as cosponsors again, and again with cooperation of the ACM
and the IEEE Computer Society, we issued calls for submissions. The call was not
widely publicized in academic journals, but we covered some large mailing lists and
Usenet newsgroups.

The response was both gratifying and surprising. With only three months lead
and limited publicity, we received 60 papers from researchers on 5 continents. The
submissions dealt with everything from cache design to optical computing to multi-
media workstations to performance tuning and debugging of multiprocessor systems.
The program committee reviewed the papers, made some tough choices, and the 21
papers in this proceedings are the result.

We have already started to plan a third event, another symposium. It has already
been approved by Usenix. It will be held in the spring of 1992, probably in the Western
United States somewhere. Again, we expect Usenix and SERC cosponsorship, and
ACM and IEEE-CS pa.ticipation. We also hope you will consider contributing to
that event, and in future SEDMS that others may put together in the years to come.



In the meantime, our thanks to the hardworking members of our program com-
mittee, and to all the reviewers who aided them in their reading and decision-making.
We greatly appreciate the hard work, advice, and efforts on our behalf by Ellie Young,
Carolyn Carr, and Judy DesHarnais of Usenix. Georgia Conarroe of Purdue proved
herself invaluable (again) in helping keep Spaf on track with the program committee
tasks. And thanks especially to all the people who took the time and effort to con-
tribute papers to the symposium, and to come to Atlanta in March to be with us.
Thank you — we hope you enjoy it!

George Leach Gene Spafford
General Chair Program Chair
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Abstract

RP3, the Research Parallel Processing Prototype, is a research vehicle for exploring the
hardware and software aspects of highly parallel computation. RP3 is a shared-memory
machine that was designed to be scalable to 512 processors; a 64 processor machine has
been in operation since October 1988. The operating system for RP3 is a version of the
Mach system from Carnegie Mellon University. This paper discusses what we have learned
about developing operating systems for shared-memory parallel machines such as RP3 and
includes recommendations on how we feel such systems should and should not be struc-
tured. We also evaluate the architectural features of RP3 from the viewpoint of our use
of the machine. Finally, we include some recommendations for others who endeavor to
build similar prototype or product machines.

Introduction

The RP3 project of the IBM Research Division had as its goal the development of a research ve-
hicle for exploring all aspects of highly parallel computation. RP3 is a shared-memory machine
designed to be scalable to 512 processors; a 64-way machine was built and has been in operation
since October of 1988.

For the past few years, the authors of this paper have been responsible for creating the operating
system environment used to run programs on RP3. (The operating system for RP3 is a version
of Mach [1] which is a restructured version of BSD 4.3 Unix.2 ) The extensions we made to Mach
to support RP3 are described in [6] and will not be discussed in detail here. Instead, this paper
summarizes our experience developing Mach/RP3 and presents our views on how operating sys-
tems for highly-parallel shared-memory machines such as RP3 should be constructed, as well as
our experience in supporting and using this system for parallel processing research.

In the following sections of this paper, we provide an overview of the RP3 architecture and a brief
history of the RP3 project. We then discuss the lessons we feel we learned during the course of this
project and we state some recommendations we would make to developers of similar machines,
whether such machines are designed as research prototypes or commercial products.

RP3 Hardware Overview

Figure 1 illustrates the RP3 architecture. An RP3 machine can consist of up to 512 processor
memory elements or PME’s. The prototype hardware that was actually built, which we will refer
to as RP3x, consists of 64 PME’s. Each PME includes the following components:

1 Supported in part by the Defense Advanced Research Projects Agency under Contract Number N00039-87-C-0122
(Multi-processor System Architecture).
2 Unix is a registered trademark of AT&T in the United States and other countries.
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Figure 1. The RP3 Architecture

CPU The central processing unit, a 32-bit RISC processor known as the ROMP. The same
processor i8 used in the IBM R'T workstation.

FPU The floating point unit, similar to the floating point unit found on the IBM RT System
APC card. It uses the Motorola MC68881 floating point chip which implements the
IEEE floating point standard.

I/O0 The I/O interface, which provides a connection to an IBM PC/AT that serves as an I/0O
and Support Processor, or ISP. Each ISP is connected to 8 PME’s and to an IBM
System/370 mainframe.

MMU  The memory management unit. The MMU supports a typical segment and page table
address translation mechanism and includes a 64-entry, two-way set associative trans-
lation lookaside buffer (TLB).

Cache A 32-kilobyte, two-way set associative, real-address cache. To allow cache lookup to
proceed simultaneously with virtual address translation, the RP3 page size is made equal
to the cache set size of 16 kilobytes.

MC The memory controller. The memory controller examines each memory request to de-
termine whether it is for this PME (in which case it is passed to the memory module)
or a remote PME (in which case it is passed to the switch). The top 9 bits of the address
specify the target PME.

Distributed & Multiprocessor Systems (SEDMS II) USENIX Association



Memory A 1- to 8-megabyte memory module. (The 64-way RP3x is fully populated with
8-megabyte memory modules.) Note that all memory in RP3 is packaged with the
Processors.

PMC The performance measurement chip. This device includes registers that count such
things as instruction completions, cache hits and misses, local and remote memory ref-
erences, and TLB misses. It can also periodically sample the switch response time.

All the PME’s of an RP3 machine are connected by a multistage interconnection network or
switch. The switch, which is constructed of water-cooled bipolar technology, has 64-bit data paths
and a bandwidth of roughly 14 megabytes/second per PME. All memory on RP3 is local to indi-
vidual PME’s but is accessible from any processor in the machine. However, a performance penalty
is incurred when accessing remote memory. RP3x has an access time ratio of 1:12:20 between
cache, local, and remote memory, assuming no network or memory contention. The fact that not
all memory in the system has the same access times puts RP3 in the class of non-uniform memory
access or NUMA machines. Support of this NUMA architecture required operating system ex-
tensions that are discussed in [6].

To avoid potential memory bottlenecks, the RP3 architecture includes the concept of interleaved
memory. Addresses for interleaved memory undergo an additional transformation after virtual to
real address translation. The interleaving transformation exchanges bits in the low- and high-order
portions of the real address (see figure 2). Since the high-order bits of the address specify the PME
number, the effect of the interleaving transformation is to spread interleaved pages across memory
modules in the system, with adjacent double-words being stored in different memory modules. The
number of bits interchanged (and hence the log base 2 of the number of modules used) is specificd
by the interleave amount in the page table. TFigure 2 shows how the interleaving transformation
can be used to spread virtual pages across multiple PME's.

Normally, all data used by more than one processor is stored in interleaved memory. For this
reason, interleaved memory is also referred to as global memory. Local, or non-interleaved, mem-
ory is referred to as sequential memory.

If enabled in the hardware, a one-to-one hashing transformation is applied before the interleaving
transformation. The hashing transformation randomizes sequential memory references as an addi-
tional technique to minimize memory conflicts.

The RP3 hardware does not provide any mechanism for keeping caches coherent between PME’s;
cache coherency must be maintained in software. The cache is visible to application code in the
sense that instructions to invalidate the cache are provided in user mode. In addition, the segment
and page tables include cacheability information, so that ranges of virtual addresses (on page
boundaries) can be specified as cacheable or non-cacheable memory. Since there is no page table
associated with real-mode memory access, all real-mode memory accesses on RP3 are non-
cacheable references. Cacheable memory can be further identified as marked data. A single cache
operation can be used to invalidate all data in the cache that has been loaded from virtual memory
identified as marked data.

RP3 supports the fetch-and-add [9] operation (as well as fetch-and-or, fetch-and-and, ctc.) as the
basic synchronization primitive. Fetch-and-add(location,value) is an atomic operation that returns
the contents of “location’ and then increments the contents of the location by ‘value’.

Further details of the design of the RP3 PME and system organization can be found in [15] and
[5]. RP3x, our working 64-way prototype, differs from the published design in the following re-
spects:

e The I/O and Support Processors, or ISP’s, in RP3x are simple IBM PC/AT's rather than the
elaborate custom-built machines described in the published RP3 design. Each PC/AT is
connected to 8 PME’s and can access RP3 memory through its PME’s. Memory requests
from an ISP are identical to requests from a PME’s own processor, so an ISP can address real
or virtual memory that is local, remote, or even interleaved. The ISP-PME bandwidth is

USENIX Association Distributed & Multiprocessor Systems (SEDMS II)
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Figure 2. The RP3 interleaving transformation

roughly 500 kilobytes/second and can be dedicated to a single PME or multiplexed among
PME’s. An ISP can raise an interrupt in any of its PME’s, and a PME can signal its ISP.
The I/O hardware allows such a signal to interrupt the ISP, but our current ISP software is
synchronous and periodically polls each PME's signal line.

In the original RP3 design, each ISP was to be directly connected to devices such as disks and
networks. In the implemented design, the ISP’s are channel-connected to a System/370
mainframe which in turn can access a large collection of disks and other devices. Bandwidth
between an ISP and the System/370 is roughly 3 megabytes/second. RP3 I/O requests are
passed from a PME to its ISP to the System/370 and back.

The original RP3 design called for a combining switch that would reduce memory and switch
contention by merging fetch-and-op operations when they collide at interior switch elements.
The design could not be implemented in the technology available at the time. The current
design supports the full range of fetch-and-op’s, but the operations are serialized at individual
memory controllers and are not combined in the switch.

The floating point processors in RP3x are based on the standard RT workstation floating point
unit and incorporate Motorola MC68881 floating point chips implementing the IEEE floating
point standard. The original RP3 design called for vector floating point processors imple-
menting the System/370 floating point specification.

The RP3x cache system limits the PME clock rate to 7 MHz, about a third of the originally
projected rate. Furthermore, the current memory controller is able to support just one out-

Distributed & Multiprocessor SyStems (SEDMS I USENIX Association




standing request to the memory subsystem at a time rather than the eight outstanding requests
it was designed to handle.

e The RP3x memory management unit does not support hardware reload of the translation
lookaside buffer (TLB). When a processor makes a memory request to a virtual address that
is not mapped by the TLB, an exception is raised, and a software exception handler must ex-
plicitly load translation information for the faulting address into the TLB.

History of RP3

Our experience with RP3 is closely related to its development history, so it is useful to summarize
the major milestones of this project. The original idea that the IBM Research Division should at-
| tempt to build a large parallel processor apparently originated with a task force led by George
; Almasi during the winter of 1982-83. The earliest the name RP3 was actually used appears to be
: in the fall of 1983, when a group led by Greg Pfister began to design the RP3 architecture. In

October of 1984, the IBM Corporate Management Committee agreed to fund the RP3 project.
With funding secured, the existing project team was expanded to include a design automation
group, a processor design group, a technology group (responsible for constructing the machine and
coordinating production of parts with the IBM development divisions), and a software development
group. The software group initially concentrated on the development of parallel applications. Since
no parallel hardware was available, the approach selected was to emulate a virtual parallel processor
under VM/370. This led to the development of the EPEX [7] system and a significant library of
applications were written using the EPEX parallel programming extensions to Fortran.
Other significant technical milestones:
Dec 1984 RP3 architecture frozen. With the exceptions noted previously, this is a de-
scription of the machine as it exists today.
Aug 1985 A set of papers on RP3 were published in the Proceedings of the 1985 Interna-
tional Conference on Parallel Processing. [15][5][16]
Dec 1985 Power/mechanical frame completed and installed in lab.
Jun 1986 Uniprocessor version of RP3 instruction level simulator completed.
Aug 1986 First version of Mach on RP3 simulator completed.
Dec 1986 First complete processor chip set assembled and tested.
Apr 1987 Final-pass chip designs released to manufacturing.
Sep 1987 EPEX environment ported to Mach/RT.
Sep 1987 First full PME with final-pass chips completed.
Sep 1987 Multiprocessor version of RP3 instruction level simulator completed.
Oct 1987 Mach/RP3 runs on first PME.
Nov 1987 Mach/RP3 runs under multiprocessor RP3 simulator.
Feb 1988 Mach/RP3 runs on two-processor hardware.
Jun 1988 Mach and three EPEX test applications run on 4-processor hardware.
USENIX Association Distributed & Multiprocessor Systems (SEDMS II)
3



Aug 1988 Mach and three EPEX test applications run on 8-processor hardware.

Oct 1988 64-processor prototype (RP3x) completed and turned over to software team.

Nov 1988 64-way application speedup experiments completed on three EPEX test pro-
grams.

Feb 1989 Mach/RP3 with cacheability control and interleave support completed.

Mar 1989 Mach/RP3 with processor allocation primitives and local memory support com-
pleted.

Jun 1989 RP3x upgraded to include cache and PMC.

Jul 1989 RP3x available to outside users via NSF net.

Mar 1990 RP3x upgraded with floating point coprocessors. (Before this, all floating point

had been emulated in software.)

A final historical note: all the authors of this paper joined the RP3 project after the initial design
for the machine was complete. Thus, we are unable to comment on some of the early RP3 archi-
tectural and design decisions.

Lessons Learned from RP3 Operating Systems Development

Mach was a win. The original plans for RP3 included a contract with the Ultracomputer project
at New York University for the development of a Unix-compatible RP3 operating system based
on the Ultracomputer Symunix operating system [8]. For a variety of reasons, our group chose
to pursue Mach, first as an alternative, and then as the primary operating system for RP3. The
selection of Mach as the basis for the RP3 operating system was a successful strategy for the fol-
lowing reasons:

¢ It allowed us to use the same operating system on RT workstations, on VM/370, and on RP3.
These versions of Mach cooperate in supporting compilation, debugging, and testing of user
code on RP3. The same programming environments and compilers execute under Mach/RT
as under Mach/RP3, and users are able to accomplish much of their debugging on Mach/RT
before moving to the parallel machine.

* It enabled the rapid development of an initial uniprocessor RP3 operating system. Mach was
designed to be portable and maintains a fairly clear separation of machine-independent from
machine-dependent code. Since RP3 uses the same processor as the RT workstation, porting
Mach/RT to a single RP3 PME was straightforward. Uniprocessor Mach/RP3 uses not only
the machine-independent code from Mach/RT but much of the machine-dependent code as
well. The major exception concerns memory management, because the RP3 and RT memory
management units are radically different. Here again the porting effort was aided by Mach'’s
clear encapsulation of machine-dependent memory management code.

* It aided the transformation of the uniprocessor RP3 operating system into a multiprocessor
operating system. The machine-independent Mach code was multiprocessor-capable to begin
with. ~ We could concentrate on making the RT-based machine-dependent code
multiprocessor-capable as well. In this effort we were aided by the examples provided by ex-
isting Mach implementations for a variety of commercial multiprocessors.

e It simplified the support of the RP3 memory architecture. Changes for global and local
memory support as well as for user-level cacheability control were isolated in the machine-
dependent portion of the kernel.

Some disadvantages of using Mach were that
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