MAPCON 1V

Multiprocessor and Array Processor Conference

SPECIAL PROCESSING

Edited by
Howard L. Johnson

Teeal
13CS] THE SOCIETY FOR COMPUTER SIMULATION INTERNATIONAL

INTERNATIONAL

MAPCON 1V

SPECIAL PROCESSING

Proceedings of the Fourth SCS Multiconference on
Multiprocessors and Array Processors
3-5 February 1988
San Diego, California

Edited by
Howard L. Johnson
Information Intelligence Sciences, Inc.

Iscs!

INTERNATIONAL

A Society for Computer Simulation International (Simulation Councils, Inc.) publication
San Diego, California

Rosemary A. Whiteside, Managing Editor

© 1988
SIMULATION COUNCILS, INC.
(The Society for Computer Simulation International)
P.O. Box 17900
San Diego, California 92117

.

ISBN 0-911801-31-6

PRINTED IN THE UNITED STATES OF AMERICA

MAPCON IV

MULTIPROCESSOR AND ARRAY
PROCESSOR CONFERENCE, 1988

Preface

This Proceedings contains papers from most of the presentations given at the
Multiprocessor and Array Processor Conference (MAPCON) held in San Diego, Califor-
nia, in February 1988, under the sponsorship of The Society for Computer Simulation In-
ternational. The previous MAPCON was held in 1987 and was a successor to the earlier
Peripheral Array Processors Conferences in 1982 and 1984. The 1987 conference ad-
dressed the emerging mini-supercomputer products in many scientific applications.

This 1988 conference departed from the traditional topic of vendor products to instead
examine the state of the emerging science and technologies associated with “Special Pro-
cessing”. Chip technologies and automated design/engineering software have opened the
way for research laboratories and companies to build special purpose devices that
achieve high performance/cost benefits not attained through general purpose
approaches.

This volume consists of papers selected from abstracts submitted in response to an SCS
Call for Papers. They have been grouped into appropriate subtopics of special process-
ing. These subtopics were used to organize the conference and the contents of this
Proceedings.

Part 1: Introduction and Overview

Part 2: Systolic Arrays, Special Function Units and Accelerators
Part 3: Special Processors for Simulation

Part 4: Committing General Solvers to Hardware

Part 5: Image and Graphics Processors

Part 6: Applications Topics

As currently planned, the 1989 MAPCON will again follow the previous format of
presenting vendor products in a way beneficial to potential users. A special topic will be
chosen for the 1990 conference.

Howard L. Johnson, Editor

Information Intelligence Sciences, Inc.
Aurora, Colorado

vii

Part 1
INTRODUCTION AND
OVERVIEW

CONTENTS

Page

Authors

Preface

Special hardware to achieve high performance: The science

Flexible communications simulation on a high-speed PC
workstation

Performance evaluation of SIMD processor designs

A connectionist simulation of an analog solution to the minimum
cost network flow problem

Solutions of molecular modeling applications with a VAXBI
attached vector processor -

Concurrent real-time simulations

dCONES: A distributed concurrent environment for VLSI circuit
simulation

The role of specialized processors in the NAS program:
Retrospective/prospective

Automatic generation of ordinary differential equations
application software for multiprocessor computers

Scheduling the solution of ordinary differential equations on
multiprocessor computers

MAXIM-1: Description of fine grain architecture for solving
Maxwell's equations

Mapping array computations for a dataflow multiprocessor

Matching algorithms and architectures: Image processing
examples

An introduction to volume graphics and volume visualization
Parallel processing for image computing

Speeding up 3D animation for simulation

Some examples of applications of the transputer

The past, present, and future of neural network implementations

Overlapping communications with computations in static
load-balancing

Impact of precision on the performance of bit-oriented SIMD
processors

Retargetable software development tools for custom high speed
processors

Author Index

17

27

32

38

47

52

58

67

71
79

85
91
94

103

109

111

117

123

129

Howard L. Johnson

Howard L. Johnson

Kurt Matis
James W. Modestino

William Appelbe

Robert Marcus
Peter Alexander

Timothy S. Floyd

Wentai Liu
Roberto Salama
William T. Krakow

Eugene Levin
Frank Preston

Socrates Dimitriadis
Walter J. Karplus

Walter |. Karplus
Socrates Dimitriadis

Howard L. Johnson
Brian R. Bell

Jack B. Dennis

Leah H. Jamieson

Alvy Ray Smith
Alessandro Piol

Brian Wyvill
David Jevans
Geoff Wyvill

Philip G. Mattos

Scott Olmsted
Anthony Materna

Xinming Lin
Walter J. Karplus

Rudolph O. Faiss

Robert S. Norin

Part 1
INTRODUCTION AND
OVERVIEW

R Bt A
Simulation
ISBN 0-911801-31-6

Special hardware to achieve high performance:
The science

Howard L.

Johnson

Information Intelligence Sciences, Inc.

BACKGROUND

We are accustomed to using general purpose hardware to
solve computational problems in individual
applications. Until recently, building one's own
computer for a specific problem was out of the
question. The development cycle for a machine
generally took 10 years of work by a variety of highly
skilled, extremely scarce people. This required a
significant initial investment, where investors
normally seek a low risk. Further, the economic
advantages of high volume demanded a signiticant
market to justify initial development cost.

was felt that

There have been a few cases where it

gain in performance/cost justified building special
machines:
o Signal processors for defense, medical, and

oil applications ot fast Fourier transtorms,
convolutions, and similar algorithms

¢} Database management machines to handle large
database applications

0 Special functional accelerators for graphics
and image processing

o Fault-tolerant machines for critical
applications requiring greater vredundancy
than available in general purpose

architectures.

WHAT HAS CHANGED?

The single most important contribution Lo change in
interest in special processors 1is emphasis by top
universities in all aspects of computer sciences. A
large cadre of graduates capable of addressing the
problems associated with special computing is being
inter jected annually into all areas of the scientific
work force.

A second factor 1is the new environment created by
advances in the semiconductor technologies. Off-the-
shelf VLSI chips (and soon ULSI, where chip com;.¢ it
exceeds 2 million devices) provide inexpensive
building blocks. As is often the case, DoD is lTeading
the way (e.g., in the VHSIC program). Adaptation can
be accomplished at a very low level in gate arrays,
standard cell systems, programmable logic arrays, and
use of silicon compilers.

Automated techniques and tools for developing
algorithms, designing corresponding architectures, and
implementation of the hardware are now supporting two-
to-three year developments of complex systems.

Another
seriously

important driver is
considering

that entrepreneurs are
applications that require

throughput not achievable by general
approaches for cost and/or performance reasons.

purpose

CLASSES OF SPECIAL HARDWARE

The powerful and highly complicated general purpose
computer has not been the product of amatcurs.
Designs oftered in the marketplace used the latest in
technology along the course of the design cycle. Few
people have qualified tor involvement in this enormous
undertaking. Costs and risks have been high and a
payoff has resulted only from a high volume of sales
applied to a wide set of applications.

This did not stop the theoreticians from imagining the
possibilities for implementing specific algorithms in
hardware using massive parallelism. [1] recalls
jmportant papers by J. von Neumann '"The General
logical Theory of Automata," 1951 [2], [F.C. Hennic
"I[terative Arrays of Logical Circuits," 1961 [3], and
D.L. Slotnick, W.C. Borck, and R.C. McReynolds, "The
Solomon Computer,'" 1962 [4].

In current efforts, there seem to be four directions
for application specific computing:

o Seeking out concurrency in algorithms and
implementing it at the cell level in cellular
automata such as cellular arrays, systolic

arrays, or wavefront machines

o Adapting the architecture to special
characteristics and requirements of an
application, including vector or array dimension,
word size, computational mix, computational
functionality; as well as matched memory, 1/0,
and processing

o Speeding up often used functions with special

function units and add-on accelerators that use

concurrency and/or special hardware (optical or
analog techniques)

0 Committing to hardware the general problem
solvers previously available and used extensively
in software versions

ARCHITECTURAL CONSIDERATTIONS

l'xamining characteristics of parallel and vector

architectures provides insight Lo approaches to
designing special processors.

Control Mechanism

Most general purpose architectures are driven by a
clock, where a fixed rvelation exists between clock
steps and functions performed. In avchitectures with
massively parallel cooperating elements, compensaling
for clock skew can be a problem. A lew applications

themselves to even a tighter lockstep of
gain interface simplicity. At the other
approaches eliminate difficult
synchronization issues since computed results are the
synchronization for the next step. For a single
application or a single algorithm, the data flow graph
identifies where parallelism can be exploited at any

adapt
functions to
extreme, data flow

of the subinstruction, instruction, tfunction, and
program levels. However, in data flow, buffers must
be well planned to handle processing delays.

Reduction techniques assist in the data flow analysis,
however, for known, well specified problems, reduction
as a control mechanism is probably not useful in
special architectures.

Data Mechanism

accustomed to referencing data in memory by
address. Another approach is to reference by content.
The associative scarch of data moving through
microprocessor compdrators is often simpler and faster
than determining specific addresses for storage and
retrieval.

We are

Concurrency Type

achieve their greatest
performance gains by exploiting concurrency.
Concurrency can exist in the multiple execution of a
single instruction stream or of multiple instruction
streams executed simultaneously. It can exist in the
chaining of functions to create process pipelining and
in the movement of data. Implementation is in array
operations on vectors, in pipelining of multistaged
functions or operations, in machines with independent
and sometimes heterogeneous processing elements, and
in the interleaving of memory. When one considers what
concurrency can exist at the subinstruction,
instruction, and process level, it is easy to see that
sequential processing has been done more for
simplicity of control and stucture, not because it is
right.

Special architectures

‘As in splitting the distance of a transcontinental
trip between a bicycle and an airplane, it makes very
little difference timewise to charter a faster plane.
Fmphasis must be placed on the slowest mode of
computation and on those activities that occupy the
critical path. Nature provides much less synchronous
(or vector) parallelism than what man imposes for
simplicity (e.g., equal grids or equal time steps in
an algorithm). From a computation standpoint on a
single problem, these unnecessary inefficiencies
resulting from forced regularity may not be desirable.

Connectivity

In a special processor, problem dictated connectivity
exists; nothing-more nothing-less. Also, commensurate
with the demands of the problem, the communications
system has the appropriate bandwidth, direction of
data flow, multiplexing of problem data types, and the
necessary communications flexibility. General
connection approaches (crossbar, hypercube, bus) are
designed to best accommodate unknown traffic patterns.
In a special processor the data flow is usually known,
often precisely. Connectivity issues such as tcpology
isomorphism, scalability, balance, and logical
reconfigurability are usually not issues; only a set
of mutually compatible rates, minimizing design costs
where high performance is not required.

Communications

Direct connectivity and limited switching accommodates
predictable traffic patterns and volumes. A set of
mutually compatible parallel data flows should, in
addition, overlap processing Lo the maximum degree
possible, and achieve a mutually compatible time
budget. The best technologies available should be
used to accommodate high performance demands, with
economical technologics used elsewhere.

Memory Distribution

Special architectures often give rise to the
functionalization of memory and dedication to a single
purpose. Both local and global memories are found.
Knowledge of the data flow can allow staging and
buffering to minimize wuse of high speed, expensive
technologies.

Partitioning

In special processors, the partitioning is natural and
the architecture general corresponds to the natural
partitioning of the problem, avoiding forced

‘partitioning (e.g., divide and conquer).

Scheduling and Synchronization

Activities are wusually known and deterministic.
Synchronization can be accomplished by scheduling
separate activities to a clock step. Fven more
natural is synchronization and scheduling of
activities following a data flow or reduction

approach.
Instructions

Often, the entire process can be incorporated in
hardware in a special purpose machine. One of the
biggest problems, however, is that a slight change to
the formulation of the problem results in an expensive
hardware design change. The alternative is
programmability. This could be at the microprocessor
level or a single instruction stream being fed to many
processing elements. In other cases, the program carn
be data driven using simple control codes to replacc
complex instructions.

can be accompanied

A sophisticated special precessor

by an applicative language that didentifies the
characteristics of the problem (e.g., pixels,
dimensions, step size, and presence or absence of

computational terms). This greatly simplifies

operating the processor for non-programmers.

Data

Scaling requirements of +] 8 in 32 bit floating
point arithmetic and +10%%*308 in 64 bit floating point
arithmetic are usually overkill in individual
problems. The same is true with the significance

representable by 24 bits (7 decimal digits of
significance) or 48 bits (14 decimal digits of
significance). Hardware logic can be saved by
employing fixed point and required manual scaling
through software, thereby reducing cost and

potentially increasing performance.
Data Structure

processor, data are addressable and
natural quantities. A word is olten

In a special
transmaitted in

inefficiently small and efficiency of a page depends
on statistics and probabilistic usage. Instead, for
example, a pencil of data along a 3D solution space, a
row of data in a video scene, or a sentence of textual
information are more appropriate.

PECTO" TANCE POTENTTAL

‘he increase in performance between a standard off-
the-shelf architecture and a special purpose
architecture depends on the problem, how adaptable it
is to the standard architecture, and possible
*xploitation by a special architecture. If a problem
.s the right vector length and the correct I/0 mix

tor the Cray (say the XMP-4), one would be hard

pressed to build a special processor faster than the
Cray. However, most typical numerical applications
only run at 25% - 35% of peak sSpeed on the Cray. A

non vectorizable problem may only be able to use the
scalar part of the Cray, reducing the performance even
more. It s important to remember that non
vectorizability does not necessarily mean non
parallelizability. Most problems are parallelizable
at some level. Further, a 2D or 3D parallel array
architecture does not suffer pipeline startup and
slowdown costs present in a vector architecture.

Most general purpose processors are either sequential
and therefore depend on technology for their speed, or
they are built to excel in a small class of numerical
problems (e.g., vector and matrix, linear equations,
or FFT). Consider the processing required for
artificial intelligence applications (e.g., symbolic
processing and optimal search) or highly repeated
functions (e.g., spatial transformations or database
search). There is a very high potential performance
gain available when these are committed to hardware.

The tradeoff is then between standard chips available
or buildable and the technology that the large
manufacturers can bring to bear (e.g., IBM and Cray).
These latter include clock speeds ten to twenty times

greater, higher density chips, faster internal
comnunications, and massive storage. Typical
performance tradeofl situations between Lypes of
general purpose processors and special purpose

processors might be:

GENERAL PURPOSE SPECTAL PURPOSE

Supercomputer

Technology Advantage
x10-20

Adaptation Advantage
x5-1000

.General Purpose Sequential

Technology Advantage Adaptation Advantage
x5 x100-10K

General Purpose Parallel

Technology Advantage Adaptation Advantage
x2 x50-5000

Other Factors
Fault Tolerance

Real Time
Applicative Language

Reliability
Accommodate Change
Standard Language

expect 1in a special purpose
over three orders-of-magnitude
performance advantage over current general purpose
processors, depending on the problem. This sugge§ts
analysis of problems in detail for parallel, systolic,
or other characteristics on which a special approach
could capitalize.

In conclusion, we can
processor from zero to

COST POTENTIAL

between the cases above
time, though specilic
Cost advantage is more
realize. Factors to be

Performance advantages
probably will hold with
performance will increase.
difficult to detcermine and
considered include:

o Cost, schedule, and technological risk in
design/development

o Technological shelf-1ife
o Volume parts/labor cost reduction
[§) Commercial vendor margin (amortization ol

development costs)

0 ‘ngineering and design costs (in-house

versus purchased)
o Development costs for [irst few (prototype)

Technology is changing by about an order-ol-magnitude
every five to seven years with product top positioning
of three years or less. A special processor under
normal circumstances should be conceived and built in
less than three years to avoid Lhe next generation.
Development costs will probably be at least twice that
of the vendor engineering laboratorices.

The introduction of cost, schedule, and performance
risks in the development of a special processor
dictates that projected cost/performance should be
significantly less (e.g., half) that of the off-the-
shelf product.

Doing the project without experienced qualitied people
greatly increases risk and risk impact.

WHAT IS NEEDED TO ADVANCE THE SCTENCE

The goals are Lo bring about the creation of standard
inexpensive chip sets and connections that allow a
three year design/prototyping cycle. The
manufacturers must accomplish this with a less
sophisticated designer in mind, providing more and
better instructions and handholding services.

As in any science, knowledge is gained both from
theory and experiment. Simulation is be used to
verify the theory. There are two important pursuits:

developing architectures from Lhe application
algorithms and implementing the algorithms, A
methodology for architecture tradeoffs can include the
current and projected cost and risk expericac
factors that are decreasing at a very rapid rate qi.c
to development tools.
The science needs tools: computer aided
experimentation with approaches, memory partitioning,
data flow algorithms, critical path models and
queueing models. However, like any frontier, it must
be conquered by pioneers like von Neumann, Hennie,
Slotnick, H.T. Kung, C.E. Leiserson [5], and a
multitude of others.

References:

[1] Fortes, Jose A. B., and B.W. Wah "Systolic Arrays
from Concept to Implementation," I1EEE Computer, Vol.20
No. 7, July 1987, pp. 12-17.

[2] von Neumann, J., "The General Logical Theory of
Automata," in Cerebral Mechanisms in Behavior - The
Hixon Symposium, L.A Jeffries, ed. 1951, John Wiley &
Sons, New York.

|3] Hennie, F.C., Iterative Arrays of Logical
Circuits, 1961, MIT Press, Cambridge, Massachusetts.

|4] Slotnick, D.L., W.C. Borck, and R.C. McRevnold=,
"The Solomon Computer," Proceedings AFIPS Fall Joint
Computer Conterence, 1962, Spartan Books, Washington
D.C., pp. 97-107.

[5] Kung, H.T. and C.E. Leiserson,"Systolic Arrays
(for VLSL)," Sparse Matrix Proceedings 1978,1979,
Academic Press, Orlando, Florida, pp. 256-282.

Part 2
SYSTOLIC ARRAYS, SPECIAL
FUNCTION UNITS &
ACCELERATORS

1988 by The Soclety for Computer
Simulation
ISBN 0-911801-31-6

Flexible communications simulation on a high-speed PC
workstation

Kurt Matis
MODCOM, Inc.
14 Wood Dale Drive
Ballston Lake, N.Y. 12017

ABSTRACT

We describe the application of a new board-
level arrary processor to the continuous-time
simulation of signal processingsystems. This
product, called the VORTEX, is manufactured by SKY
Computer Systems, Inc. A 20 MLOP peak throughput
capability allows a PC based host to rival the

overall computational capability of typical
mainframes. A unique software development
envircnment provides easy conversion of FORTRAN
source code to execute within the VORTEX. This
envirconment includes a vectorizing preprocessor,
called VEX, that allows various levels of code

conversion, depending on the time requirements of
each module. A memory-mapped interface to the VORTEX
avoids the latency of DMA transfers and provides the
user with flexibility in partitioning the simulation
problem.

We demonstrate the utility of the PC-based
approach to simulation within the context of the
Workstation Communications Simulator (WCS) System.
This system provides the capability for interactive
simulation of point-to-point digital communication
links. This system, originally developed on a VAX
11/780 acting as host to a Floating Point Systems
array processor, has been ported to the PC/AT-VORTEX
configuration. We provide typical graphical
simulation outputs to illustrate the useage of the
WCS system.

I. INTRODUCTION

It's generally well-appreciated that digital
simulation can provide a useful and effective adjunct
to either analytical performance evaluation or direct
hardware evaluation of modern engineering systems. A
number of simulation techniques and methodologies are
described elsewhere in these proceedings. In this
paper we describe our experience in the design and
development of a high-speed workstation-based
approach to interactive simulation of digital point-
to-point communication systems. Our approach to the
design of this system depends crucially on the unique
features of a new type of application procesor,
called the VORTEX, manufactured by SKY Computer
Cerpeoration. This single-board processor provides a
hierarchical software development environment and
includes a multitasking executive supportihg parallel
operation of multiple processors.

Digital
(cf. [1]1)
task if
machines.

simulation of communication systems

is generally a computationally demanding
executed on present-day general purpose

This is due mainly to the large number of
repetitive signal processing operations that must be
performed in order to obtain a statistically wvalid
measure of system performance. The high cost and/or
long running times associated with execution of
centralized large main-frame computing facilities has

James W. Modestino
ECSE Department
Rensselaer Polytechnic Institute
Troy, N.Y. 12180-3590

motivated the search for more effective cost

performance alternatives.

One approach, as described in [2], is to make
use of a dedicated minicomputer hosting a floating-
point array processor. These array processors are,
in essence, peripheral floating-point accelerators
accessed through a high-speed bus under control of
the host machine which provides overall system
control. For example, the Interactive Communications
Simulator (ICS), as described in [2], made use of a
DEC machine (either a VAX or PDP-11) hosting a
Floating Point Systems, Inc. AP-120B floating-point
array processor. This processor utilizes technology
which is approximately a decade old and offers a
potential throughput rate 12M floating-point
operations per second (12 MFLOPS). In this approach,
all signal processing software is executed in the AP-
120B and is written in assembly language. Executive
control software and graphics are written in FORTRAN
and are executed in the host processor.

While the ICS has proven useful as both a
research and educational tool, several factors have
motivated the search for still more effective
cost/performance solutions to communication systems

simulation. In the first place, the hardware
configuration required to support the ICS is,
although fairly commonplace, still relatively

expensive and difficult to justify for a dedicated
simulation facility. Secondly, the software is not
readily portable to other host configurations.
Finally, there does not exist a rich programming
environment for efficient development of AP-120B
assembly language code for new signal processing
modules which, through evolution, have been found to
be useful additions to the original ICS repertoire.

Fortunately, recent developments in high-speed
workstation technology have provided solutions in
many of those problems and at this time provide a
very attractive cost/performance alternative hardware
configuration. These workstation are relatively
inexpensive and with standardized operating systems,
together with device independent drivers, result in
highly portable software. Furthermore, these
workstations provide a rich program development
environment allowing relatively easy addition of new
software modules. Finally, and perhaps most
importantly, single-board memory-mapped array
processors are available for floating-point
acceleration offering potential throughputs as high
as 20 MFLOPS - a considerable improvement over the
large minicomputer-hosted array processors such as
the AP-120B.

In this paper, we will describe a PC
workstation-based communications simulator called
WCS. This system is essentially a modern low-cost

version of ICS. WCS was developed to meet the needs

of a wide variety of |users including: system
developers, communication researchers and educators
desiring a cost-effective, high-performance

simulation tool.

The remainder of this paper is organized as
follows: In Section II we provide an overview of the
VORTEX application processor describing some of the
features which make it particularly well-suited to
the simulation application. This is followed, in
Section III, with a description of the WCS system and
how it employs the VORTEX applications processor.

In Section IV, we describe the operation of the
WCS system through illustration of typical graphical

output and probide triming benchmarks for typical
simulation scenaries. Finally, in Section V, we
provide a summary and conclusions.
II. The VORTEX Application Processor

The block diagram in Fig. 1 illustrates the
basic architecture of the VORTEX Application
Processor and the interface to the iLBX-II bus. The

VORTEX is a high-speed arithmetic processor capable
of performing integer and floating-point computations
at a rate of 20 MFLPOS per second. The VORTEX
employs a powerful instruction set and an object-
oriented software architecture to perform scalar,
vector and matrix operations. It performs high-speed
floating-point arithmetic in IEEE-P754 single and
double-precision formats as well as two’s complement
integer and logical functions. Used as a coprocessor
in the ENCHANCED WCS system, a single VORTEX provides

an increase in computational throughput of about
three orders of magnitude.
The VORTEX consists of a user-programmable

an arithmetic unit that executes
floating-point, integer and logical operations; a
host bus programmed I/O (PIO) interface and a large
internal memory. A unique feature of the VORTEX
architecture is the fact that both the PIO register
set and the large internal memory are memory-mapped
to the host 80286 address space. Consequently, the
VORTEX memory is directly addressable by the host
application program without the latency of DMA
transfers. This has very significant ramifications
to overall simulation efficiency in systems employing
such an attached processor.

control processor,

In the conventional approach, data is
transferred by means of a DMA initiated by the host
application program. Depending on the host and

operating system, the overhead incurred in initiating
a host-AP transfer can be on the order of several

milliseconds. In order to obtain resonable
efficiency, the simulation problem must be
partitioned in such a fashion to allow the AP

processing time to be greater than the DMA overhead

plus transfer time. For some communications
subsystems, such as digital filters, this is quite
easily accomplished, since generic routines are

available for the implementation of such functions.
For more specialized modules that cannot easily be

decomposed into simpler, generic, operations this is
usually not the case. Because of complicated
internal logic and special operations, subsystems

such as decoders and adaptive equalizers do not admit
such a representation. In this case, the simulation
developer is usually forced to program applications
modules directly in AP microcode. Needless to say,
this makes the incorporation of some new types of

modules time-consuming even for the experienced

developer.

With the memory-mapped approach to interfacing,
an attached processor can process much smaller
segments of a simulation problem during each call to
the VORTEX. Even scalar operations are increased in
speed due to the speed of the command decoder and a
low latency arithmetic wunit. In most an
executing applications program can be working in
parallel with the VORTEX, performing outer loop
control and supervision while issuing function calls
to the VORTEX at the appropriate times. A schematic
diagram of this interface is shown in Fig. 2. Our
approach 1is to perform all computations within a
common data area which actually resides in VORTEX
memory in the ENHANCED WCS system. This FORTRAN
common block is typically mapped above the 1 Mbyte
boundary in the 80286 address space. The actual
address 1is strappable, and depends on the amount of
installed physical memory. In the WCS, the area
between 1-2 Mbytes is used for dynamic buffer pool
storage so the applications processors are mapped
above this.

cases,

VORTEX Programming Environment

Due to the nature of the memory-mapped hardware
interface and the ensuing increased flexibility for
problem partitioning, a new approach to AP software
development is required. Application processor
programming aids have traditionally been 1limited to
FORTRAN-callable function libraries and microcode
development support. Compliers have been developed
for some machines but, by and large, these have
tended to be relatively inefficient.

The VORTEX programming environment, as
indicated in Fig. 3 affords a four-level
hierarchical approach to applications processor code
development . The first three 1levels invoke a
vectorizing preprocessor, called VEX. The VEX
preprocessor provides the applications developer with
access to VORTEX facilities directly from a high-
level language. VEX reads a FORTRAN-77 file and
translates this into an equivalent file containing
instructions for both the host and the AP.

At the first level, the programmer can use VEX
transparently to translate an existing FORTRAN
application to an equivalent one adapted for use with

the VORTEX. The resulting file contains some
residual FORTRAN control statements, interspersed
with calls to elementary VORTEX functions.

At the second level of access, the |user
familiar with VORTEX operations can rearrange the
original source code to include explicit calls to

VORTEX operations. This is accomplished through the
insertion of explicit calls to invoke specific VORTEX
operations.

At the third level of access, the programmer

can use the VEX facilities to create new VORTEX
command subroutines that implement time-critical or
frequently used functions. The subprogram is

translated into a special VORTEX command subroutine
that gets loaded into VORTEX memory at the same time
as the VORTEX microcode.

The final level of access to the VORTEX
involves custom microcode development using the
VORTEX microassembler. We have found it necessary to
develop microcode for the WCS system only for the
lowest-level time-critical functions such as random

