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natural numbers: 1, 2, 3,4,5, . ..

prime numbers: 2, 3,5, 7, 11, . . .
composite numbers: 4, 6, 8,9, 10, . . .
whole numbers: 0, 1,2,3,4,5, . ..
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rational numbers: all numbers % where a and b

are integers and b # 0
irrational numbers: coordinates of points on the number
line that are not rational numbers
real numbers: any rational or irrational number
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PREFACE

TO THE INSTRUCTOR

In most schools intermediate algebra students have a mathematical back-
ground that is quite varied. Some have recently completed a beginning alge-
bra course; many others have not studied algebra for years. Of this mixture,
many students are quite talented, and others find algebra very difficult. To
make the problem even worse, most intermediate algebra textbooks contain
much more material than can be covered in a typical three-hour course. With
this type of book it is extremely easy to get mired down in the review
material, which leaves little time for advanced topics. Consequently, the
weaker studi%{ are placed in jeopardy if you omit this review material.

We have mfinimized the problems presented by this heterogeneous group
of students by writing a book that is flexible, comprehensive, but yet man-
ageable. Because this book contains an abundant supply of worked examples
and exercises with the odd answers provided, the student can learn a great
amount on his or her own time. This will permit you occasionally to cover
more than one section per day. In a typical three-hour course, you should
have little trouble covering the required sections in the first ten chapters. In
an expanded four-hour course you should be able to cover the entire book
at a leisurely pace.

We think that you will be pleased with this book because it has the fol-
lowing features:
Review. It includes a thorough review of basic concepts.
Many Exercises. It includes over 3500 exercises.
Comprehensive. It covers all of the topics that are essential in intermediate
algebra to provide a strong background for work in college algebra or finite
mathematics. Many optional sections are provided for an extended course.
Mathematically Honest. The developments preserve the integrity of the
mathematics, but they are not so rigorous as to confuse students.
Relevant. It includes many applications and discusses occupations requir-
ing a strong background in mathematics.
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Teacher Support. Teacher’s manuals are available that contain the answers
to the even-numbered exercises and sample chapter tests.

We think your students will be pleased with this book because it has the
following features:

Informal Writing. It is written for the student to read and understand.
The writing is informal rather than technical.

Worked Examples. There are over 350 worked examples. Many ideas are
presented by examples.

Functional Use of Color. It makes use of color—not just to highlight
important definitions and theorems, but to “point” to terms and expressions
that you would point to in a classroom discussion.

Review Exercises. Each chapter concludes with a chapter summary and
review exercises with all answers provided. Interspersed throughout the book
are cumulative review exercises with all answers provided.

Applications. Careers in mathematics are discussed at the end of each
chapter. Applications appear throughout the book.

Summary of Information. Key formulas and ideas are listed inside the
front and back covers for quick reference.

ORGANIZATION AND COVERAGE

The 53 required sections in the first 10 chapters form a complete course in
intermediate algebra. The last chapter plus the optional sections provide extra
material for good students, or an extended course. The first 10 chapters are
sequential and should be taught in order.

CALCULATORS

The use of calculators is encourageﬁ)&foughout the book. We believe that
students should learn calculator skills in the mathematics classroom. They
will then be prepared to use a calculator in science and business classes, and
for nonacademic purposes.

ACCURACY

Dozens of mathematics teachers have reviewed either all or a portion of this
book. We are grateful for their many constructive criticisms and helpful
suggestions. Both authors have independently worked all of the exercises.

TO THE STUDENT

Because we believe that many students who read this book do not intend to
major in mathematics, we have written it in an informal rather than a tech-
nical way. We have provided an extensive number of worked examples, and
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have tried to present them in a way that will make sense to you. This book
has been written for you to read, and we think that you will find the expla-
nations helpful. If you do not bother to follow the explanations carefully,
much of the value of the book will be lost. What you learn here will be of
great value both in other course work and in your chosen occupation.

We suggest that you consider keeping your book after completing this
course. It is the one piece of reference material that will keep at your fin-
gertips the material that you learned here.

We wish you well.
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1.1

(1.1)

1.2)

(1.3)

CHAPTER ONE

THE REAL NUMBER SYSTEM

The concept of number is fundamental in mathematics. For this reason, we begin
by discussing the various kinds (or sets) of numbers, and how they relate to each
other.

SETS OF NUMBERS

If a person were asked to name a number, the likely response would be a number
that is used to count with: a number such as 1, 2, or 7. Because the counting num-
bers come to mind most naturally, they are called the natural numbers.

Definition. The natural numbers are the counting numbers
1.2.3,456.17,89,.. .

The three dots used in the previous definition, called the ellipsis, indicate that the
list continues endlessly.

Certain natural numbers can be divided (without a remainder) by other natural
numbers. For example, 12 can be divided by 1, 2, 3, 4, 6, and 12. If a natural
number is greater than 1 and if it can be divided without remainder only by itself
and 1, that number is called a prime number. A natural number is called a composite
number if it is greater than 1 and if it can be divided without remainder by a natural
number other than itself and 1.

Definition. A prime number is any natural number, greater than 1, that is
divisible without remainder only by itself and 1.

Definition. A composite number is a natural number, greater than 1, that is
not a prime number.

The prime numbers less than 20 are

2,3,5,7,11, 13,17, and 19
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(1.4)

(1.5)

The composite numbers less than 20 are
4,6,8,9, 10, 12, 14, 15, 16, and 18

Because the natural numbers begin with 1, zero is not a natural number. When
zero is included with the list of natural numbers, however, we obtain a different set
of numbers called the whole numbers.

Definition. The whole numbers are the numbers

0,1,2,3,4,507,89,. . .

It is often necessary to use numbers to indicate direction as well as quantity—for
example, profit or loss, temperatures above or below zero, and gains or losses in
football. To do so, we must extend the set of whole numbers to include the negatives
of the natural numbers. The negatives of the natural numbers are indicated with
“ —” signs. For example, the negative of 2 is written as —2, and the negative of 7
is written as —7. The whole numbers together with the negatives of the natural
numbers form the set of integers.

Definition. The integers are the numbers
...,~5 -4 -3 ¢ 1 01,2,3,4,5,...

All of the previous sets of numbers can be graphed on a number line. To graph
the set of integers on the number line, we draw a line as in Figure 1-1, pick a point
(called the origin), and give that point a number name (a coordinate) of 0. We
locate points that are equal distances to the right and to the left of O, place dots at
these points, and label them as indicated in the figure. The points to the right of O
have coordinates that are positive numbers, and the points to the left of O have
coordinates that are negative numbers. Note that 0 is neither positive nor negative.
Both the line and the integers marked on it continue forever in both directions. If a
nonzero integer does not have a sign preceding it, that integer is considered to be
positive: 5 = +5and 7 = +7.

origin

v
J U D G U G U GHD G GHD G GH U SR G G G G S
5

98§ =7 =6 =5 ~4=3—2 -1 O 1,2 3 4

Figure 1-1

Note that 2 represents a point that is two units to the right of 0, and that —2
represents a point that is two units to the left of 0. The coordinates 2 and —2
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(1.7)

Example 1

1.1 SETS OF NUMBERS 3

represent points that are the same distance from 0, but in opposite directions. Two
numbers that are the same distance from 0, but in opposite directions, are called
negatives of each other. For example,

1. the negative of 7 (denoted by —7)-is —7, and
2. the negative of —7 (denoted by —(—7)) is 7.

Likewise,

3. the negative of 12 (denoted by —12) is —12, and
4. the negative of — 12 (denoted by —(—12)) is 12:

The results of Parts 2 and 4 generalize as the following rule.

The Double Negative Rule. If x represents any number, then

“(x=x

The distance on a number line (without regard to direction) that a number is from
0 is called the absolute value of that number. For example, the absolute value of 7
(denoted by |7|) and the absolute value of —7 (denoted by | —7|) are both 7. Likewise,
|12| and | — 12| are both 12.

More formally, the absolute value of a number is defined as follows.

Definition. If x is positive or 0, then |x| = x.
If x is negative, then |x| = —x.

If a number is positive or 0, then it is its own absolute value. If a number is negative,
then its negative (which is positive) is its absolute value. Note that |x| is never
negative.

a. 6| =6

b. |-5| =5

c. [00=0

d —[1|=-0=-17

e. —|-7=-M=-17 &

Some integers can be written as twice another integer. For example, 6 is twice
the integer 3, and 16 is twice the integer 8. Such integers are called even integers.
The integer 9 is not an even integer because it is not twice another integer. Such
integers are called odd integers. The even integers from — 10 to 10 are

-10, -8, —6, —4, —2,0,2,4,6, 8,10
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(1.8)

Example 2

The odd integers between — 10 and 10 are
-9,-7,-5,-3,-1,1,3,5,7,9

If two integers are added, subtracted, or multiplied, the result is always another
integer. It is also possible to divide integers, but the result is not always another
integer. For example, 8 divided by 4 is the integer 2, but 8 divided by 5 is not an
integer. To permit divisions such as 8 + 5, mathematicians invented the rational
numbers.

Definition. A rational number is any number that can be written as the
quotient §, where a and b are integers, and b # 0. .

8
Note thatz = 2. This is true because 4(2) = 8. Similarly,

-254 = 3, because 8(3) = 24
and

0

5 = 0, because 9(0) = 0

However, the quotient g is undefined; there is no number that when multiplied by
zero, gives 5. The quotient g is also undefined because all numbers when multiplied
by 0 give 0. Thus, it is understood that the denominator of a fraction can never
be 0.

a. The fraction % is a rational number because it is the quotient of two integers, and
the denominator is not 0.

b. The integer 7 is a rational number because it can be written as 11, or as 174 , and
so on. In fact, all integers are rational numbers.

c. The integer O is a rational number because it can be written as %, the quotient of
two integers. Note that although division by zero is never allowed, zero can be
divided by any nonzero number.

d. The decimal number 0.125 is a rational number because it can be expressed as
the quotient of two integers: 0.125 = %.

e. The decimal number 0.6666. . . is a rational number because it can be expressed
as the quotient of two integers: 0.6666. . . = % -

The rational numbers also may be represented as points on a number line. In
addition to the integers, which are also rational numbers, three other rational numbers
are indicated in Figure 1-2. Halfway between the points labeled 0 and 1 is the point
associated with the rational number % The point marked —% is halfway between
points —1 and —2. The point marked % is one-third of the way from point 2 to
point 3.



