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Introduction

The following pages are the notes from a seminar that I gave during the
spring and some portion of the summer of 1993 at the Mathematics Institute
of Oslo University. The aim of the seminars was to give a rapid but rigorous
introduction for the graduate students to Analysis on Wiener space, a subject
which has grown up very quickly these recent years under the impulse of the
Stochastic Calculus of Variations of Paul Malliavin (cf. [12]).

Although some concepts are in the preliminaries, I assumed that the students
had already acquired the notions of stochastic calculus with semimartingales,
Brownian motion and some rudiments of the theory of Markov processes. A
small portion of the material exposed is our own research, in particular, with
Moshe Zakai. The rest has been taken from the works listed in the bibliography.

The first chapter deals with the definition of the (so-called) Gross-Sobolev
derivative and the Ornstein-Uhlenbeck operator which are indispensable tools of
the analysis on Wiener space. In the second chapter we begin the proof of the
Meyer inequalities, for which the hypercontractivity property of the Ornstein-
Uhlenbeck semigroup is needed. We expose this last topic in the third chapter,
then come back to Meyer inequalities, and complete their proof in chapter IV.
Different applications are given in next two chapters. In the seventh chapter we
study the independence of some Wiener functionals with the previously devel-
oped tools. The chapter VIII is devoted to some series of moment inequalities
which are important for applications like large deviations, stochastic differential
equations, etc. In the last chapter we expose the contractive version of Ramer’s
theorem as another example of the applications of moment inequalities developed
in the preceding chapter.

During my visit to Oslo, I had the chance of having an ideal environment for
working and a very attentive audience in the seminars. These notes have partic-
ularly profited from the serious criticism of my colleagues and friends Bernt
Qksendal, Tom Lindstrgm, Ya-Zhong Hu, and the graduate students of the
Mathematics department. It remains for me to express my gratitude also to
Nina Haraldsson for her careful typing, and, last but not least, to Laurent De-
creusefond for correcting so many errors .

Ali Siileyman Ustiinel
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Preliminaries

This chapter is devoted to the basic results about the Wiener measure, Brownian
motion, construction of the Ito stochastic integral and the chaos decomposition
associated to it.

1 The Brownian Motion and the Wiener Mea-
sure

1) Let W = Co([0,1]),w € W, t € [0, 1], define W;(w) = w(t) (the coordinate
functional). If we note by B; = o{W,;s < t}, then there is one and only one
measure g on W such that

i) W{Wo(w) =0} =1,
ii) Vf € Cs°(R), the stochastic process process

1 t
(t0) — FW@) = 5 [ W)
is a (B:, u)-martingale. p is called the Wiener measure.

2) From the construction we see that for ¢t > s,
E,[exp ia(W; — W,)|B,] = exp —a’(t — s),
hence (t,w) — W;(w) is a continuous additive process (i.e.,a process with inde-
pendent increments) and (W;;t € [0, 1]) is also a continous martingale.
3) Stochastic Integration
Let K : W x [0,1] — R be a step process :

K‘(“’) = Zai(w) : 1[‘.,la+|[(t)’ ai(“") € Lz(B‘i) .

i=1

Define .
I(K)=/ K,dW,(w)
0
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D ai(w) - (Wyy (w) — Wiy (W)

i=1

[/de ] E/ Klds,

i.e. I is an isometry from the adapted step processes into L?(u), hence it has a
unique extension as an isometry from

Then we have

L2([0,1] x W, A, dt x dp) - L*(p)

where A denotes the sigma algebra on [0, 1] x W generated by the adapted, left
(or right) continuous processes. I(K) is called the stochastic integral of K and

it is denoted as [, K,dW,. If we define

L(K) = /0 " K.aw,

1
/ Ljo,(8) K, dWj,
0

it is easy to see that the stochastic process ¢ — I;(K) is a continuous, square
integrable martingale. With some localization techniques usmg stopping times,
I can be extended to any adapted process K such that fo K 2(w)ds < 00 a.s.
In this case the process t — I;(K) becomes a local martingale, i.e., there exists
a sequence of stopping times increasing to one, say (T,,n € N) such that the
process t — Iiar,(K) is a (square integrable) martingale.

Application: Ito formula We have following important applications of the
stochastic integration:
a) If f € C*(R) and M, = [, K,dW,, then

f(M) = f(0) + / f(M,)K,dW, + / f"(M,)K2ds.
b)
£:(I(h)) = exp( /o h,dW,—% /0 h2ds)

is a martingale for any h € L?[0, 1].
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4) Alternative constructions of the Brownian motion and the Wiener
measure

A) Let (7i;¢ € N) be an independent sequence of N;(0,1) Gaussian random
variables. Let (g;) be a complete, orthonormal basis of L2[0, 1]. Then W; defined
by

0 t
Wiw) = Y ) [ (o)
=1
is a Brownian motion.

Remark: If (g;;¢ € N) is a complete, orthonormal basis of L?([0,1]), then
( Jo gi(s)ds;i € N) is a complete orthonormal basis of H([0, 1]) (i. e., the first

order Sobolev functionals on [0, 1]).

B) Let (2, F,P) be any abstract probability space and let H be any separable
Hilbert space. If L : H — L?(Q,F,P) is a linear operator such that for any
h € H, E[expiL(h)] = exp —%|h|%, then there exists a Banach space with dense

injection H L w dense, hence W* L, H is also dense and a probability measure
p on W such that

/ exp(w®,w)dp(w) = exp—1 | 7*(w*) [&

and

L(j" (W) (w) = (w*,w)
almost surely. (W, H, ) is called an Abstract Wiener space and u is the Wiener
measure. If H([0,1]) = {h : h(t) = f(: h(s)ds, |kl = |h|Lao,1)} then u is the
classical Wiener measure and W can be taken as Cy([0, 1]).

Remark: In the case of the classical Wiener space, any element A of W* is a
signed measure on [0, 1], and its image in H = H([0, 1]) can be represented as
@) = f(; A([s,1])ds. In fact, we have for any h € H

(A, k) = <Ajh) >
1
/(;h(s)z\(ds)

(A0, 1]) = /0 ([0, 5])h(s)ds

1 .
/0 (A([0, 1]) = A([0, s])(s)ds

/  \(ls. 1))i(s)ds.
0
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5) Let us come back to the classical Wiener space:

i) It follows from the martingale convergence theorem and the monotone class
theorem that the set of random variables

{f(Wr,,..., W, );ti €[0,1], f € S(R");n € N}

is dense in L2(u), where S(R™) denotes the space of infinitely differentiable,
rapidly decreasing functions on R".

ii) It follows from (i), via the Fourier transform that the linear span of the

set {exp fol hdW, — 1 fol h2ds; h € L?([0,1])} is dense in L%(u).

iii) Because of the analyticity of the characteristic function of the Wiener mea-
sure, the elements of the set in (ii) can be approached by the polynomials,
hence the polynomials are dense in L%(p).

5.1 Cameron-Martin Theorem:

For any bounded Borel measurable function F, h € L?[0, 1], we have
] 1 1 1
E[F(w+ / h,ds) - exp[— / hadW, - / h2ds]] = E,[F).
0 0 0

This means that the process W;(w) + f(; h,ds is again a Brownian motion under
the new probability measure

1 1
exp(—/ hsdW, — %/ hids)dp.
0 0

Proof: It is sufficient to show that the new probability has the same charac-
teristic function as u: if z* € W*, then z* is a measure on [0, 1] and

/0l W, (w)z"* (ds)

we(z", w)w

Wiw) = (0], - [ =" (10.0)awi(e)

1
Wiz ([0, 1]) - /o 2*([0,£]).dW,

Il

/ 20t 1) AW
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Consequently
1 .
Elexpi / 2*([t, 1])dWi(w + / hyds) - £(~I(h))]
° 1 ° 1 1 1 1
Efexpi / 2*([t, 1])dW; + i / 2*([t, 1])hedt— / hedW, — / h2di)
0l 0 . 0 1 (]l
= E[expi/ (iz*([t,1]) - h,)dW,.expi/ z*([t, 1])hedt — -2-/ hldt]
l lo 1 0 1 1 °
= exps / (iz*([t, 1]) — he)2dt + i / 2*([t, 1)) hedt — 2 / h2dt
2 /o 0 2Jo

1
= exp —%/{; (z*([t, 1]))%dt

L:.:a
= exp—3 |i(=") I -
QED
Corollary (Paul Lévy’s Theorem ) Suppose that (M;) is a continuous
martingale such that My = 0, M? —t is again a martingale. Then (M;) is a

Brownian motion.

Proof: We have the Ito formula

f(M:)=f(0)+/o f'(M.)-dM.+%/o f'(M,) -ds.

Hence the law of {M; : t € [0,1]} is p. QED

5.2 The Ito Representation Theorem:
Any ¢ € L?(u) can be represented as

1
¢ = Ely] +/ K dW,
0
where K € L*([0,1] x W), adapted.

Proof: Since the Wick exponentials

E(I(h)) = exp/ol h,dW, — 1/2/01 hids

can be represented as claimed, the proof follows by density. QED
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5.3 Wiener chaos representation

Let K; = fol h,dW,, h € L?([0,1]). Then, from the Ito formula, we can write
1 _ 1
KP=p / KP~'h,dW, + M / KP~2h2ds
0 0

1 11 _ _ 1 _ 1 11 .
=p / [0-1) [ K hiaw, + (L% / KE72h2, dta dW,,
0 0 0
+ cee

iterating this procedure we end up on one hand with K,O, = 1, on the other hand
with the multiple integrals of deterministic integrands of the type

Jp = / heyhe, .. he, AW .. .dW,?,
0<t,<tp1 <<t <1
ij =0 or 1 with dW = dt and dW}! = dW,.
Let now ¢ € L?(u), then we have from the Ito representation theorem

1
p=Eldl+ [ Kiaw,
0

by iterating the same procedure for the integrand of the above stochastic integral:

1 1 i
o = B+ [ BUaw,+ [ [7EIKLJaw,dw, +
0 0 Jo

1 t i2
+ / / / K323 AWy dWy,dWy, .
0 Jo 0

After N iterations we end up with
N

o= H(K?) +on
0

and each element of the sum is orthogonal to the other one. Hence (pn; N €

N) is bounded in L?(u). Let (pn,) be a weakly convergent subsequence and

Poo = klim ©nN,- Then it is easy from the first part that ¢, is orthogonal to
—00

N
the polynomials, therefore poo = 0 and w — A}im 3" Jp(K,) exists, moreover
—00

N 0 ~
sup Y [|Jp(Kp)||3 < oo, hence 3~ J,(K)p) converges in L?(u). Let now K, be an
N T 1

element of L2[0,1]? (i.e. symmetric), defined as K, = K, on C, = {t; < --- <
tp,}. We define I,(K,) = p!Jp(K,) in such a way that

E[|I,,(1?,,)|2]=(p!)2/c K2dt, ...dt, = p! / IR, [2dt; .. .dt, .
' [0,1)?

Let ¢, = —’E!l , then we have
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(oo}
v = E[p] + Z I(¢p)| (Wiener chaos decomposition)
1







Chapter I

Gross-Sobolev Derivative,

Divergence and
Ornstein-Uhlenbeck
Operator

Motivations

Let W = Cy([0, 1], R?) be the classical Wiener space equipped with  the Wiener
measure. We want to construct on W a Sobolev type analysis in such a way that
we can apply it to the random variables that we encounter in the applications.
Mainly we want to construct a differentiation operator and to be able to apply
it to practical examples. The Fréchet derivative is not satisfactory. In fact
the most frequently encountered Wiener functionals, as the multiple (or single)
Wiener integrals or the solutions of stochastic differential equations with smooth
coefficients are not even continuous with respect to the Fréchet norm of the
Wiener space. Therefore, what we need is in fact to define a derivative on
the LP(u)-spaces of random variables, but in general, to be able to do this, we
need the following property which is essential: if F,G € LP(u), and if we want
to define their directional derivative, in the direction, say w € W, we write
T"F(w+ tw)|¢=o and %G(w+ tw)|i=0. If F = G p-ass., it is natural to ask that
their derivatives are also equal a.s. For this, the only way is to choose i in some
specific subspace of W, namely, the Cameron-Martin space H:

H= {h :[0,1] — R4/h(t) = /o ' h(s)ds,  |n|% = /0 l |h(s)|2ds}.

In fact, the theorem of Cameron-Martin says that for any F € L?(u), p > 1,
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heH 1
EJ[F(w+ h)exp[— /0 h(s) - dW, — 3|31 = E.[F],

or equivalently
1
Eu[P(w+ W) = ELF(w)-exp [y -dW, = §|hf3).
0

That is to say, if F = G a.s., then F(-+ h) = G(-+ h) as. forall h € H.

1 The Construction of V and its properties
If F: W — R is a function of the following type (called cylindrical ):
F(w) = f(W,(w),..., Wi, (w)), f€S(R"),
we define, for h € H,
ViF(w) = ‘—g‘-F(w + Ah)|r=o0-

Noting that W;(w + h) = Wy(w) + h(t), we obtain
VhF('lD) = Zaif(wtl (w)a seey Wl,.(w))h(tt),
i=1

in particular

' . 1 .
VaWi(w) = h(t) = [ h(s)ds = Ljo,1)(8) h(s)ds.
0 0

If we denote by U; the element of H defined as U;(s) = fo’ Ljo,¢j(r)dr, we have
VaWi(w) = (U, h)a. Looking at the linear map h — V, F(w) we see that it
defines a random element with values in H, i.e. VF is an H-valued random
variable. Now we can prove:

Prop. L.1: V is a closable operator on any L?(u) (p > 1).

Proof: This means that if (F,, : n € N) are cylindrical functions on W, such
that F, — 0 in L?(u) and if (VF,;n € N) is Cauchy in LP(u, H), then its limit
is zero. Hence suppose that VF, — £ in LP(u; H).

To prove £ = 0 p-a.s., we use the Cameron-Martin theorem: Let ¢ be any
cylindrical function. Since such ¢’s are dense in LP(u), it is sufficient to prove



